Epigenetic regulation of transcriptional plasticity associated with developmental song learning.

Theresa K Kelly, Somayeh Ahmadiantehrani, Adam Blattler, Sarah E London
Author Information
  1. Theresa K Kelly: Active Motif, Carlsbad, CA 92008, USA.
  2. Somayeh Ahmadiantehrani: Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA.
  3. Adam Blattler: Active Motif, Carlsbad, CA 92008, USA.
  4. Sarah E London: Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA london@uchicago.edu. ORCID

Abstract

Ethologists discovered over 100 years ago that some lifelong behavioural patterns were acquired exclusively during restricted developmental phases called critical periods (CPs). Developmental song learning in zebra finches is one of the most striking examples of a CP for complex learned behaviour. After post-hatch day 65, whether or not a juvenile male can memorize the song of a 'tutor' depends on his experiences in the month prior. If he experienced a tutor, he can no longer learn, but if he has been isolated from hearing a tutor the learning period is extended. We aimed to identify how tutor experience alters the brain and controls the ability to learn. Epigenetic landscapes are modulated by experience and are able to regulate the transcription of sets of genes, thereby affecting cellular function. Thus, we hypothesized that tutor experiences determine the epigenetic landscape in the auditory forebrain, a region required for tutor song memorization. Using ChIPseq, RNAseq and molecular biology, we provide evidence that naturalistic experiences associated with the ability to learn can induce epigenetic changes, and propose transcriptional plasticity as a mediator of CP learning potential.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.4068779

References

  1. Cell. 2007 Feb 23;128(4):693-705 [PMID: 17320507]
  2. Nucleic Acids Res. 2012 Jan;40(1):148-58 [PMID: 21914722]
  3. J Neurosci. 2015 Jan 21;35(3):878-89 [PMID: 25609608]
  4. J Neurosci. 2016 Mar 23;36(12):3430-40 [PMID: 27013673]
  5. Nat Rev Neurosci. 2005 Nov;6(11):877-88 [PMID: 16261181]
  6. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2926-31 [PMID: 20133639]
  7. Behav Processes. 2019 Jun;163:13-23 [PMID: 29162376]
  8. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  9. Cell. 2007 May 18;129(4):823-37 [PMID: 17512414]
  10. Neurobiol Learn Mem. 2014 Nov;115:116-27 [PMID: 25130533]
  11. Nat Methods. 2009 Nov;6(11 Suppl):S22-32 [PMID: 19844228]
  12. Neurobiol Learn Mem. 2014 Nov;115:21-9 [PMID: 25173698]
  13. Methods Mol Biol. 2014;1150:97-111 [PMID: 24743992]
  14. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  15. Science. 1959 Jul 17;130(3368):133-41 [PMID: 13668541]
  16. Nat Genet. 2008 Jul;40(7):897-903 [PMID: 18552846]
  17. Nat Rev Neurosci. 2013 Feb;14(2):97-111 [PMID: 23324667]
  18. J Neurosci. 2014 Sep 3;34(36):11929-47 [PMID: 25186741]
  19. Dev Neurobiol. 2009 Jun;69(7):437-50 [PMID: 19360720]
  20. Anim Behav. 2000 Jun;59(6):1167-1176 [PMID: 10877896]
  21. Cell Tissue Res. 2014 Jun;356(3):539-52 [PMID: 24817100]
  22. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W20-5 [PMID: 24860165]
  23. J Cogn Neurosci. 2004 Oct;16(8):1412-25 [PMID: 15509387]
  24. Genome Biol. 2005;6(8):R64 [PMID: 16086846]
  25. IEEE Trans Vis Comput Graph. 2014 Dec;20(12):1983-92 [PMID: 26356912]
  26. Nat Biotechnol. 2010 Aug;28(8):817-25 [PMID: 20657582]
  27. Nat Neurosci. 2013 Feb;16(2):124-9 [PMID: 23354385]
  28. Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9463-9468 [PMID: 28739951]
  29. Cell. 2007 Jul 13;130(1):77-88 [PMID: 17632057]
  30. Mol Brain. 2012 May 14;5:14 [PMID: 22583753]
  31. Front Syst Neurosci. 2013 Dec 03;7:102 [PMID: 24348349]
  32. Bioinformatics. 2009 Mar 15;25(6):832-3 [PMID: 19181683]
  33. J Neurobiol. 1993 Aug;24(8):1045-64 [PMID: 8251026]
  34. Nature. 2005 Aug 11;436(7052):876-80 [PMID: 15988478]
  35. Nat Genet. 2007 Mar;39(3):311-8 [PMID: 17277777]
  36. Nat Neurosci. 2008 May;11(5):579-86 [PMID: 18391944]
  37. Genes Brain Behav. 2014 Jan;13(1):118-25 [PMID: 23790063]
  38. Nat Neurosci. 2016 Jan;19(1):102-10 [PMID: 26656643]
  39. Neurobiol Learn Mem. 2008 Mar;89(3):293-311 [PMID: 18053752]
  40. Nat Rev Genet. 2011 Jan;12(1):7-18 [PMID: 21116306]
  41. Psychol Bull. 1984 Nov;96(3):518-59 [PMID: 6096908]
  42. Neuron. 1997 Nov;19(5):1049-59 [PMID: 9390518]
  43. Nat Commun. 2016 Jun 21;7:11946 [PMID: 27327620]

Grants

  1. T32 MH020065/NIMH NIH HHS

MeSH Term

Animals
Epigenesis, Genetic
Finches
Gene Expression Regulation, Developmental
Learning
Male
Music
Songbirds
Transcription, Genetic
Vocalization, Animal

Word Cloud

Created with Highcharts 10.0.0tutorsonglearningcanexperienceslearnplasticitydevelopmentalcriticalCPperiodexperienceabilityEpigeneticepigeneticassociatedtranscriptionalregulationEthologistsdiscovered100yearsagolifelongbehaviouralpatternsacquiredexclusivelyrestrictedphasescalledperiodsCPsDevelopmentalzebrafinchesonestrikingexamplescomplexlearnedbehaviourpost-hatchday65whetherjuvenilemalememorize'tutor'dependsmonthpriorexperiencedlongerisolatedhearingextendedaimedidentifyaltersbraincontrolslandscapesmodulatedableregulatetranscriptionsetsgenestherebyaffectingcellularfunctionThushypothesizeddeterminelandscapeauditoryforebrainregionrequiredmemorizationUsingChIPseqRNAseqmolecularbiologyprovideevidencenaturalisticinducechangesproposemediatorpotentialepigeneticsgenesongbird

Similar Articles

Cited By