A Fly's Eye View of Natural and Drug Reward.

Eve G Lowenstein, Norma A Velazquez-Ulloa
Author Information
  1. Eve G Lowenstein: Department of Biology, Lewis & Clark College, Portland, OR, United States.
  2. Norma A Velazquez-Ulloa: Department of Biology, Lewis & Clark College, Portland, OR, United States.

Abstract

Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including , dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in . This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in , including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using as a model organism.

Keywords

References

  1. Bioinformatics. 2012 Feb 1;28(3):411-5 [PMID: 22180411]
  2. Philos Trans R Soc Lond B Biol Sci. 2008 Oct 12;363(1507):3137-46 [PMID: 18640920]
  3. Physiol Behav. 2016 Oct 1;164(Pt B):473-477 [PMID: 27126968]
  4. Mol Psychiatry. 2018 Mar;23 (3):621-628 [PMID: 28607459]
  5. Addict Biol. 2014 May;19(3):392-401 [PMID: 24164972]
  6. Genome Biol. 2006;7(10):R95 [PMID: 17054780]
  7. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):578-83 [PMID: 25548178]
  8. Cell. 2015 Oct 8;163(2):524-524.e1 [PMID: 26451491]
  9. Genetics. 2014 Sep;198(1):45-57 [PMID: 25236448]
  10. J Comp Neurol. 2018 Jan 1;526(1):6-32 [PMID: 28730682]
  11. Nat Neurosci. 2011 May;14 (5):612-9 [PMID: 21499254]
  12. Cell. 2004 Jun 25;117(7):981-91 [PMID: 15210117]
  13. Development. 1993 Jun;118(2):401-15 [PMID: 8223268]
  14. Sci Rep. 2016 Oct 06;6:34641 [PMID: 27708416]
  15. Curr Biol. 2005 Sep 6;15(17):R673-84 [PMID: 16139201]
  16. Curr Opin Neurobiol. 2018 Apr;49:51-58 [PMID: 29258011]
  17. Cell Rep. 2015 Feb 24;10(7):1023-31 [PMID: 25704807]
  18. Nucleic Acids Res. 2002 Jan 1;30(1):149-51 [PMID: 11752278]
  19. Nature. 2012 Dec 20;492(7429):433-7 [PMID: 23103875]
  20. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11644-9 [PMID: 21709242]
  21. J Neurosci. 2013 May 8;33(19):8134-43 [PMID: 23658154]
  22. Psychopharmacology (Berl). 2008 Aug;199(3):457-80 [PMID: 18311558]
  23. Alcohol Clin Exp Res. 2005 Oct;29(10):1777-86 [PMID: 16269907]
  24. Cell. 2009 Oct 16;139(2):416-27 [PMID: 19837040]
  25. Neuron. 2012 Mar 8;73(5):941-50 [PMID: 22405204]
  26. PLoS One. 2014 Jan 31;9(1):e87714 [PMID: 24498174]
  27. Cell. 2014 Sep 25;159(1):200-214 [PMID: 25259927]
  28. J Neurogenet. 2016 Jun;30(2):133-48 [PMID: 27328845]
  29. Annu Rev Entomol. 2013;58:543-62 [PMID: 23020615]
  30. J Neurosci. 2016 Apr 20;36(16):4647-57 [PMID: 27098705]
  31. Curr Opin Pharmacol. 2009 Feb;9(1):65-73 [PMID: 19162544]
  32. Elife. 2015 Nov 17;4:e10719 [PMID: 26573957]
  33. Nature. 2005 Aug 11;436(7052):845-7 [PMID: 16094367]
  34. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1482-6 [PMID: 6572401]
  35. Alcohol Clin Exp Res. 2013 Nov;37(11):1862-71 [PMID: 23808628]
  36. Elife. 2014 Dec 23;3:e04580 [PMID: 25535794]
  37. Curr Biol. 2000 Feb 24;10(4):187-94 [PMID: 10704411]
  38. Nat Genet. 2007 Jun;39(6):715-20 [PMID: 17534367]
  39. Eur J Neurosci. 2004 Aug;20(3):611-22 [PMID: 15255973]
  40. J Neurosci. 2013 Feb 27;33(9):4044-54 [PMID: 23447613]
  41. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3577-81 [PMID: 6427773]
  42. Nucleic Acids Res. 2017 Jan 4;45(D1):D663-D671 [PMID: 27799470]
  43. Alcohol Clin Exp Res. 2012 Nov;36(11):1903-12 [PMID: 22551215]
  44. Nat Rev Neurosci. 2010 Jul;11(7):514-22 [PMID: 20383202]
  45. J Comp Physiol A. 1985 Sep;157(2):263-77 [PMID: 3939242]
  46. Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E4085-93 [PMID: 26170296]
  47. Front Neural Circuits. 2009 Jul 01;3:5 [PMID: 19597562]
  48. PLoS One. 2012;7(6):e39863 [PMID: 22761915]
  49. Curr Biol. 2010 Aug 24;20(16):1445-51 [PMID: 20637624]
  50. J Neurobiol. 2004 Aug;60(2):249-61 [PMID: 15266655]
  51. Neuropharmacology. 2009;56 Suppl 1:97-106 [PMID: 18694769]
  52. PLoS Genet. 2017 Nov 9;13(11):e1007059 [PMID: 29121639]
  53. Biomed J. 2015 Dec;38(6):496-509 [PMID: 27013449]
  54. Nature. 2010 May 6;465(7294):91-5 [PMID: 20364123]
  55. Fly (Austin). 2011 Jul-Sep;5(3):191-9 [PMID: 21750412]
  56. Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9377-81 [PMID: 15967985]
  57. Philos Trans R Soc Lond B Biol Sci. 2008 Oct 12;363(1507):3125-35 [PMID: 18640910]
  58. Elife. 2014 Dec 23;3:e04577 [PMID: 25535793]
  59. Methods. 2014 Jun 15;68(1):15-28 [PMID: 24583113]
  60. Alcohol Clin Exp Res. 2012 Jan;36(1):24-34 [PMID: 21797886]
  61. J Exp Biol. 1988 Sep;139:169-79 [PMID: 2905379]
  62. Cell Rep. 2012 Oct 25;2(4):991-1001 [PMID: 23063364]
  63. Alcohol Alcohol. 2008 Sep-Oct;43(5):529-36 [PMID: 18503079]
  64. Nature. 2012 Aug 23;488(7412):512-6 [PMID: 22810589]
  65. Neuropsychopharmacology. 2014 Jan;39(2):254-62 [PMID: 24121188]
  66. PLoS One. 2012;7(12 ):e52007 [PMID: 23284851]
  67. Genes Brain Behav. 2012 Aug;11(6):727-39 [PMID: 22624869]
  68. Science. 2012 Mar 16;335(6074):1351-5 [PMID: 22422983]
  69. Curr Biol. 2015 Mar 16;25(6):751-758 [PMID: 25728694]
  70. Nat Chem Biol. 2014 Jul;10 (7):582-589 [PMID: 24880859]
  71. J Neurosci. 2003 Nov 19;23(33):10495-502 [PMID: 14627633]
  72. Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21153-8 [PMID: 24324162]
  73. Curr Biol. 2009 Dec 29;19(24):2126-32 [PMID: 20005106]
  74. Am Psychol. 2016 Nov;71(8):670-679 [PMID: 27977239]
  75. PLoS One. 2010 Apr 01;5(4):e9954 [PMID: 20376353]
  76. Science. 2013 Jan 25;339(6118):440-2 [PMID: 23349289]
  77. Cell. 1998 Jun 12;93(6):997-1007 [PMID: 9635429]
  78. Proc Natl Acad Sci U S A. 2007 May 15;104(20):8253-6 [PMID: 17494737]
  79. Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5485-90 [PMID: 12692303]
  80. Alcohol Clin Exp Res. 2006 May;30(5):745-53 [PMID: 16634842]
  81. Genetics. 2017 Sep;207 (1):311-325 [PMID: 28743761]
  82. PLoS Biol. 2004 Dec;2(12):e408 [PMID: 15550987]
  83. J Neurosci. 2012 Oct 17;32(42):14767-74 [PMID: 23077061]
  84. Physiol Rev. 2015 Jul;95(3):853-951 [PMID: 26109341]
  85. Nat Neurosci. 2012 Feb 26;15(4):592-9 [PMID: 22366756]
  86. Neuron. 2000 Oct;28(1):261-71 [PMID: 11086999]
  87. Hum Genet. 2012 Jun;131(6):959-75 [PMID: 22350798]
  88. PLoS Genet. 2012;8(7):e1002768 [PMID: 22807684]
  89. Neuron. 2011 Jun 9;70(5):979-90 [PMID: 21658589]
  90. Pharmacogenomics J. 2001;1(2):97-100 [PMID: 11911448]
  91. J Biol Chem. 2000 Jul 7;275(27):20588-96 [PMID: 10781603]
  92. Annu Rev Psychol. 2016;67:23-50 [PMID: 26253543]
  93. PLoS One. 2015 Aug 20;10 (8):e0136167 [PMID: 26291453]
  94. Curr Biol. 2015 Sep 21;25(18):2435-40 [PMID: 26344091]
  95. Neurosci Biobehav Rev. 2001 Jan;25(1):53-74 [PMID: 11166078]
  96. PLoS Genet. 2013;9(12):e1003986 [PMID: 24348266]
  97. J Cell Biol. 1981 Jul;90(1):101-7 [PMID: 6265472]
  98. Genetics. 2012 Oct;192(2):521-32 [PMID: 22798487]
  99. Nat Commun. 2017 May 15;8:15230 [PMID: 28504254]
  100. Alcohol Clin Exp Res. 2004 Oct;28(10):1469-80 [PMID: 15597078]
  101. Science. 1999 Aug 13;285(5430):1066-8 [PMID: 10446052]
  102. J Insect Physiol. 2014 Oct;69:107-17 [PMID: 24819202]
  103. PLoS One. 2012;7(12):e52521 [PMID: 23300696]
  104. Genome Biol. 2007;8(10):R231 [PMID: 17973985]
  105. Curr Biol. 1998 Jan 15;8(2):109-12 [PMID: 9427649]
  106. J Neurosci. 2007 Jul 18;27(29):7640-7 [PMID: 17634358]
  107. J Neurosci. 2008 Mar 19;28(12 ):3103-13 [PMID: 18354013]
  108. Curr Opin Neurobiol. 2017 Apr;43:56-62 [PMID: 28088703]
  109. Nature. 2009 Jun 18;459(7249):927-30 [PMID: 19536255]
  110. J Neurosci. 2016 May 11;36(19):5241-51 [PMID: 27170122]
  111. J Exp Biol. 2013 Mar 15;216(Pt 6):939-51 [PMID: 23447663]
  112. J Neurosci. 2007 Apr 25;27(17 ):4541-51 [PMID: 17460067]
  113. Cell. 2006 Oct 6;127(1):199-211 [PMID: 17018286]
  114. Curr Biol. 2011 Jan 11;21(1):1-11 [PMID: 21129968]
  115. Curr Biol. 2002 Aug 6;12(15):1293-300 [PMID: 12176357]
  116. PLoS Genet. 2013;9(9):e1003710 [PMID: 24068941]
  117. Alcohol Clin Exp Res. 2010 Feb;34(2):302-16 [PMID: 19951294]
  118. Genome Res. 2001 Jun;11(6):1114-25 [PMID: 11381037]
  119. Genetics. 2011 Apr;187(4):1193-205 [PMID: 21270389]
  120. J Neurosci. 2015 Nov 18;35(46):15396-402 [PMID: 26586826]
  121. Alcohol Clin Exp Res. 2011 Sep;35(9):1600-6 [PMID: 21599714]
  122. Neuron. 2015 Jul 1;87(1):139-51 [PMID: 26074004]
  123. Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9026-30 [PMID: 12084940]
  124. Genetics. 2009 Oct;183(2):733-45, 1SI-12SI [PMID: 19652175]
  125. Cell. 2005 Oct 7;123(1):145-56 [PMID: 16213219]
  126. Nat Neurosci. 2005 Jan;8(1):18-9 [PMID: 15592467]
  127. Behav Brain Res. 2016 Apr 1;302:213-9 [PMID: 26802726]
  128. Curr Biol. 1999 Aug 26;9(16):853-60 [PMID: 10469593]
  129. Elife. 2016 Aug 23;5: [PMID: 27572262]
  130. Front Integr Neurosci. 2016 Feb 19;10:4 [PMID: 26924969]
  131. Philos Trans R Soc Lond B Biol Sci. 2008 Oct 12;363(1507):3113-23 [PMID: 18653439]
  132. Curr Biol. 2011 May 10;21(9):746-50 [PMID: 21514159]
  133. Curr Biol. 2011 May 10;21(9):751-5 [PMID: 21514154]
  134. Cell. 2009 May 29;137(5):949-60 [PMID: 19464045]
  135. Proc Natl Acad Sci U S A. 1974 Mar;71(3):708-12 [PMID: 4207071]
  136. Annu Rev Neurosci. 2013 Jul 8;36:121-38 [PMID: 23642133]
  137. PLoS One. 2015 Jul 29;10(7):e0133956 [PMID: 26222315]
  138. Nat Commun. 2016 Feb 16;7:10652 [PMID: 26879809]
  139. Science. 2000 Mar 24;287(5461):2216-8 [PMID: 10731135]
  140. J Biol Rhythms. 2016 Apr;31(2):142-60 [PMID: 26833081]
  141. J Vis Exp. 2016 Dec 15;(118): [PMID: 28060352]
  142. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11352-7 [PMID: 19541615]
  143. J Neurosci. 2011 Jan 19;31(3):1139-48 [PMID: 21248138]
  144. Nat Neurosci. 2014 Nov;17(11):1536-42 [PMID: 25262493]
  145. J Neurosci. 2002 Dec 15;22(24):11035-44 [PMID: 12486199]
  146. J Neurochem. 2013 Apr;125(2):281-90 [PMID: 23331098]
  147. Mol Psychiatry. 2013 Jul;18(7):824-33 [PMID: 22710269]
  148. J Neurosci. 2012 Dec 5;32(49):17706-13 [PMID: 23223291]
  149. Pharmacol Biochem Behav. 2013 Oct;111:76-83 [PMID: 23994621]
  150. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2141-6 [PMID: 15677721]
  151. Neuron. 2011 Oct 20;72(2):202-30 [PMID: 22017985]
  152. PLoS One. 2017 May 12;12 (5):e0177710 [PMID: 28498868]
  153. Dis Model Mech. 2011 May;4(3):335-46 [PMID: 21303840]

Word Cloud

Created with Highcharts 10.0.0rewardstimuliethanolincludingneuralcircuitsrewardingnaturaldrugrewardsresearchmoleculareffectsstimulusmultipleappetitivecantermsystemmediatingbehaviorassaysfunctionalmodularitygenetictoolsgenespathwayssugarcocaineamphetaminemethamphetaminenicotinemechanismsusingAnimalsencounterdayinnatelyaversiveothersassignedvalencebasedexperienceDrugslikeelicitaversionshortattractionlongencodespredictivevaluedifferentanticipationattractivepunishingdrivinganimalapproachavoidconditionedneurochemistryneurocircuitrypartlyevolutionarilyconservedvertebratesinvertebratesdopaminecenternetworkneurotransmittersneuromodulatorsactingconcertencodeBehavioralbecomeincreasinglysophisticatedallowingdirectcomparisonmammalianMoreoverrecentevidenceestablishedresemblesorganizationmammalspowerfulallowcharacterizationmanipulationsingle-celllevelusedconstructdetailedmapspecificallowedidentificationmediatereinforcingreportprovidesoverviewfoodnutrientsfocusedmainlyknownunderlyingalsoincludeidentifiedtestpalatabilitypreferenceindicatemodifyCommonalitieshighlightedfuturedirectionspresentedputtingforwardquestionsbestsuitedmodelorganismFly'sEyeViewNaturalDrugRewardDrosophila

Similar Articles

Cited By