Towards Portable Large-Scale Image Processing with High-Performance Computing.

Yuankai Huo, Justin Blaber, Stephen M Damon, Brian D Boyd, Shunxing Bao, Prasanna Parvathaneni, Camilo Bermudez Noguera, Shikha Chaganti, Vishwesh Nath, Jasmine M Greer, Ilwoo Lyu, William R French, Allen T Newton, Baxter P Rogers, Bennett A Landman
Author Information
  1. Yuankai Huo: Electrical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA. yuankai.huo@vanderbilt.edu. ORCID
  2. Justin Blaber: Electrical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA.
  3. Stephen M Damon: Electrical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA.
  4. Brian D Boyd: Electrical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA.
  5. Shunxing Bao: Computer Science, Vanderbilt University, Nashville, TN, USA.
  6. Prasanna Parvathaneni: Electrical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA.
  7. Camilo Bermudez Noguera: Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
  8. Shikha Chaganti: Computer Science, Vanderbilt University, Nashville, TN, USA.
  9. Vishwesh Nath: Computer Science, Vanderbilt University, Nashville, TN, USA.
  10. Jasmine M Greer: Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.
  11. Ilwoo Lyu: Computer Science, Vanderbilt University, Nashville, TN, USA.
  12. William R French: Advanced Computing Center for Research and Education, Vanderbilt University, Nashville, TN, USA.
  13. Allen T Newton: Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
  14. Baxter P Rogers: Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.
  15. Bennett A Landman: Electrical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA.

Abstract

High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software development and expansion, and (3) scalable spider deployment compatible with HPC clusters and local workstations.

Keywords

References

  1. J Biomed Inform. 2009 Apr;42(2):377-81 [PMID: 18929686]
  2. Neuroinformatics. 2007 Spring;5(1):11-34 [PMID: 17426351]
  3. Front Neuroinform. 2012 May 24;6:12 [PMID: 22654752]
  4. PLoS One. 2017 May 11;12(5):e0177459 [PMID: 28494014]
  5. Proc SPIE Int Soc Opt Eng. 2018 Mar;10597: [PMID: 29887668]
  6. Proc SPIE Int Soc Opt Eng. 2018 Mar;10574: [PMID: 29887666]
  7. Proc IEEE Int Conf Cloud Eng. 2017 Apr;2017:127-137 [PMID: 28884169]
  8. Med Image Anal. 2015 Aug;24(1):18-27 [PMID: 26046403]
  9. Neuroimage. 2012 Feb 15;59(4):3774-83 [PMID: 22119648]
  10. Neuroimage. 2016 Sep;138:197-210 [PMID: 27184203]
  11. Neuroimage. 2009 Jul 1;46(3):726-38 [PMID: 19245840]
  12. Front Neuroinform. 2011 Oct 14;5:23 [PMID: 22016733]
  13. Proc SPIE Int Soc Opt Eng. 2013 Mar 29;8674: [PMID: 24386548]
  14. Stud Health Technol Inform. 2009;147:127-36 [PMID: 19593051]
  15. Med Image Comput Comput Assist Interv. 2017 Sep;10433:638-646 [PMID: 29226284]
  16. Neuroimage. 2006 Jul 15;31(4):1487-505 [PMID: 16624579]
  17. Neuroimage. 2012 Aug 15;62(2):782-90 [PMID: 21979382]
  18. Neuroimage. 2007 Jan 1;34(1):144-55 [PMID: 17070705]
  19. Neuroimage. 2010 Jan 15;49(2):1524-35 [PMID: 19766196]
  20. Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10138: [PMID: 28736473]
  21. Proc SPIE Int Soc Opt Eng. 2017;2017: [PMID: 28919661]
  22. Neuroimage. 2004;23 Suppl 1:S208-19 [PMID: 15501092]
  23. Med Image Anal. 2013 Feb;17(2):194-208 [PMID: 23265798]
  24. IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 [PMID: 20378467]
  25. Neuroimage. 2016 Jan 1;124(Pt B):1097-1101 [PMID: 25988229]
  26. Magn Reson Imaging. 2013 Jul;31(6):857-64 [PMID: 23465764]
  27. Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9784: [PMID: 27127332]
  28. Front Neuroinform. 2011 Dec 23;5:33 [PMID: 22275896]
  29. Hum Brain Mapp. 2017 Feb;38(2):599-616 [PMID: 27726243]
  30. J Magn Reson Imaging. 2006 Jun;23(6):827-39 [PMID: 16649196]
  31. Proc SPIE Int Soc Opt Eng. 2018 Mar;10574: [PMID: 29910528]
  32. Neuroimage. 2012 Aug 15;62(2):774-81 [PMID: 22248573]
  33. Neuroimage. 2004 Nov;23(3):997-1012 [PMID: 15528100]
  34. PLoS One. 2013 Apr 30;8(4):e61737 [PMID: 23637895]

Grants

  1. R01NS095291/NIH HHS
  2. UL1 TR000445-06/National Center for Advancing Translational Sciences (US)
  3. R01EB017230/NIH HHS
  4. T32 EB021937/NIBIB NIH HHS
  5. UL1 RR024975-01/NCRR NIH HHS
  6. 1S10OD020154-01/NIH HHS
  7. 5R21EY024036/NIH HHS
  8. T32-EB021937/NIH HHS

MeSH Term

Diagnostic Imaging
Humans
Image Processing, Computer-Assisted
Information Storage and Retrieval
Radiology Information Systems

Word Cloud

Created with Highcharts 10.0.0imageinfrastructureprocessingsoftwaremedicalstorageVUIISHPCdataCCIlarge-scaleVanderbiltusingXNAThardwareissuescomputingjobUniversityImagingCenter12DAX3ComputingACCREdeploymentenvironmentsportabilitysystemXNAT/DAXlevelPortableHigh-throughputdemandstightintegrationhigh-performancedistributionInstituteScienceComputationalconstructedcomposeddatabaseeXtensibleNeuroimagingArchiveToolkitcontent-awareschedulingplatformDistributedAutomationpipelineautomationtoolwidevarietyencapsulatedpipelinescalled"spiders"housedprocessednearlyhalf-millionvolumesAdvancedResearchEducationfacilityinitialnativelydeployediedirectinstallationsbare-metalserverwithinleadsustainabilityFirstlaboriousdeployentireanothercentervaryinglibraryavailabilitypermissionpoliciesSecondspidersdevelopedisolatedmannerleddependencyupgradesremoteinstallationaddresshereindescriberecentinnovationscontainerizationtechniquesusedisolateunderlyingnewlypresentedsolutionfollowingnewfeatures:multi-levelapplicationflexibledynamicdevelopmentexpansionscalablespidercompatibleclusterslocalworkstationsTowardsLarge-ScaleImageProcessingHigh-PerformanceContainerizedLarge-scale

Similar Articles

Cited By