Adhesion of gram-negative rod-shaped bacteria on 1D nano-ripple glass pattern in weak magnetic fields.

Iram Saleem, Samina Masood, Derek Smith, Wei-Kan Chu
Author Information
  1. Iram Saleem: Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas. ORCID
  2. Samina Masood: Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, Texas. ORCID
  3. Derek Smith: Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, Texas. ORCID
  4. Wei-Kan Chu: Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas.

Abstract

This research project has major applications in the healthcare and biomedical industries. Bacteria reside in human bodies and play an integral role in the mechanism of life. However, their excessive growth or the invasion of similar agents can be dangerous and may cause fatal or incurable diseases. On the other hand, increased exposure to electromagnetic radiation and its impact on health and safety is a common concern to medical science. Some nanostructure materials have interesting properties regarding facilitating or impeding cell growth. An understanding of these phenomena can be utilized to establish the optimum benefit of these structures in healthcare and medical research. We focus on the commonly found rod-shaped, gram-negative bacteria and their orientation and community development on the cellular level in the presence of weak magnetic fields on one dimensional nano-ripple glass patterns to investigate the impact of nanostructures on the growth pattern of bacteria. The change in bacterial behavior on nanostructures and the impact of magnetic fields will open up new venues in the utilization of nanostructures. It is noticed that bacterial entrapment in nano-grooves leads to the growth of larger colonies on the nanostructures, whereas magnetic fields reduce the size of colonies and suppress their growth.

Keywords

References

  1. Microbiologyopen. 2019 Feb;8(2):e00640 [PMID: 29799166]
  2. Sci Adv. 2016 Jul 15;2(7):e1600087 [PMID: 27453939]
  3. J Neurotrauma. 2010 Jan;27(1):1-19 [PMID: 19698073]
  4. Nano Lett. 2010 Sep 8;10(9):3717-21 [PMID: 20687595]
  5. Phys Med Biol. 1981 Jul;26(4):613-21 [PMID: 7019937]
  6. J Chem Phys. 2006 Nov 28;125(20):204904 [PMID: 17144737]
  7. Bioelectromagnetics. 2008 May;29(4):302-11 [PMID: 18175330]
  8. Environ Health Perspect. 2004 May;112(6):687-94 [PMID: 15121512]
  9. Bioelectrochemistry. 2002 Jan;55(1-2):161-4 [PMID: 11786365]
  10. J Biomed Sci. 2009 Nov 25;16:108 [PMID: 19939265]
  11. Biomed Pharmacother. 2008 Feb;62(2):104-9 [PMID: 18242044]
  12. Photomed Laser Surg. 2013 Nov;31(11):526-30 [PMID: 23448383]
  13. Int J Microbiol. 2012;2012:587293 [PMID: 22577384]
  14. Appl Biochem Biotechnol. 2006 Aug;134(2):155-63 [PMID: 16943636]
  15. Science. 1979 Mar 30;203(4387):1355-6 [PMID: 17780480]
  16. Nanotechnology. 2011 Dec 9;22(49):494007 [PMID: 22101439]
  17. ScientificWorldJournal. 2014;2014:410423 [PMID: 25025086]
  18. Pathophysiology. 2000 Jul;7(2):143-148 [PMID: 10927195]
  19. Crit Rev Biotechnol. 2017 Jun;37(4):525-540 [PMID: 27684212]
  20. Appl Environ Microbiol. 2013 Apr;79(8):2703-12 [PMID: 23416997]
  21. J Appl Oral Sci. 2015 Mar-Apr;23(2):179-86 [PMID: 26018310]
  22. Radiat Environ Biophys. 2004 Dec;43(4):265-70 [PMID: 15645314]

MeSH Term

Bacterial Adhesion
Escherichia coli
Glass
Magnetic Fields
Nanostructures
Pseudomonas aeruginosa
Surface Properties

Word Cloud

Created with Highcharts 10.0.0growthmagneticfieldsnanostructuresimpactbacterianano-rippleglasspatternbacterialresearchhealthcarecanmedicalrod-shapedgram-negativeweakcoloniesprojectmajorapplicationsbiomedicalindustriesBacteriaresidehumanbodiesplayintegralrolemechanismlifeHoweverexcessiveinvasionsimilaragentsdangerousmaycausefatalincurablediseaseshandincreasedexposureelectromagneticradiationhealthsafetycommonconcernsciencenanostructurematerialsinterestingpropertiesregardingfacilitatingimpedingcellunderstandingphenomenautilizedestablishoptimumbenefitstructuresfocuscommonlyfoundorientationcommunitydevelopmentcellularlevelpresenceonedimensionalpatternsinvestigatechangebehaviorwillopennewvenuesutilizationnoticedentrapmentnano-groovesleadslargerwhereasreducesizesuppressAdhesion1DEscherichiacoliPseudomonasaeruginosaclusterionbeamself-assembly

Similar Articles

Cited By