Different patterns of cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI in vivo.

Dafnis Batalle, Jonathan O'Muircheartaigh, Antonios Makropoulos, Christopher J Kelly, Ralica Dimitrova, Emer J Hughes, Joseph V Hajnal, Hui Zhang, Daniel C Alexander, A David Edwards, Serena J Counsell
Author Information
  1. Dafnis Batalle: Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom.
  2. Jonathan O'Muircheartaigh: Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences & Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, United Kingdom.
  3. Antonios Makropoulos: Biomedical Image Analysis Group, Imperial College London, United Kingdom.
  4. Christopher J Kelly: Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom.
  5. Ralica Dimitrova: Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences & Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, United Kingdom.
  6. Emer J Hughes: Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom.
  7. Joseph V Hajnal: Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom.
  8. Hui Zhang: Department of Computer Science & Centre for Medical Image Computing, University College London, United Kingdom.
  9. Daniel C Alexander: Department of Computer Science & Centre for Medical Image Computing, University College London, United Kingdom.
  10. A David Edwards: Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom. Electronic address: ad.edwards@kcl.ac.uk.
  11. Serena J Counsell: Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, SE1 7EH, London, United Kingdom.

Abstract

Human cortical development during the third trimester is characterised by macro- and microstructural changes which are reflected in alterations in diffusion MRI (dMRI) measures, with significant decreases in cortical mean diffusivity (MD) and fractional anisotropy (FA). This has been interpreted as reflecting increased cellular density and dendritic arborisation. However, the fall in FA stops abruptly at 38 weeks post-menstrual age (PMA), and then tends to plateau, while MD continues to fall, suggesting a more complex picture and raising the hypothesis that after this age development is dominated by continuing increase in neural and organelle density rather than alterations in the geometry of dendritic trees. To test this, we used neurite orientation dispersion and density imaging (NODDI), acquiring multi-shell, high angular resolution dMRI and measures of cortical volume and mean curvature in 99 preterm infants scanned between 25 and 47 weeks PMA. We predicted that increased neurite and organelle density would be reflected in increases in neurite density index (NDI), while a relatively unchanging geometrical structure would be associated with constant orientation dispersion index (ODI). As dendritic arborisation is likely to be one of the drivers of gyrification, we also predicted that measures of cortical volume and curvature would correlate with ODI and show slower growth after 38 weeks. We observed a decrease of MD throughout the period, while cortical FA decreased from 25 to 38 weeks PMA and then increased. ODI increased up to 38 weeks and then plateaued, while NDI rose after 38 weeks. The evolution of ODI correlated with cortical volume and curvature. Regional analysis of cortical microstructure revealed a heterogenous pattern with increases in FA and NDI after 38 weeks confined to primary motor and sensory regions. These results support the interpretation that cortical development between 25 and 38 weeks PMA shows a predominant increase in dendritic arborisation and neurite growth, while between 38 and 47 weeks PMA it is dominated by increasing cellular and organelle density.

Keywords

References

  1. Lancet. 2000 Sep 30;356(9236):1162-3 [PMID: 11030298]
  2. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  3. Cereb Cortex. 2002 Dec;12(12):1237-43 [PMID: 12427675]
  4. Cereb Cortex. 2003 Jun;13(6):541-9 [PMID: 12764027]
  5. Neuroimage. 2003 Oct;20(2):870-88 [PMID: 14568458]
  6. J Comp Neurol. 1992 Jul 8;321(2):223-40 [PMID: 1500541]
  7. Neuroimage. 2005 Sep;27(3):579-86 [PMID: 15921934]
  8. PLoS Med. 2006 Aug;3(8):e265 [PMID: 16866579]
  9. Semin Fetal Neonatal Med. 2006 Dec;11(6):415-22 [PMID: 16962836]
  10. Cereb Cortex. 2007 Nov;17(11):2609-17 [PMID: 17259644]
  11. Cereb Cortex. 2008 Jun;18(6):1444-54 [PMID: 17934189]
  12. J Neurosci. 2007 Nov 14;27(46):12506-15 [PMID: 18003829]
  13. J Neurosci. 2008 Feb 6;28(6):1427-33 [PMID: 18256263]
  14. Brain. 2008 Aug;131(Pt 8):2028-41 [PMID: 18587151]
  15. Acta Paediatr. 2009 Jun;98(6):990-5 [PMID: 19302092]
  16. Cereb Cortex. 2009 Dec;19(12):2916-29 [PMID: 19363145]
  17. Dev Neurosci. 2009;31(6):487-96 [PMID: 19622880]
  18. IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 [PMID: 20378467]
  19. PLoS One. 2011 Apr 14;6(4):e18746 [PMID: 21533194]
  20. Neurology. 2011 Oct 18;77(16):1510-7 [PMID: 21998316]
  21. Neuropsychologia. 1990;28(6):517-27 [PMID: 2203993]
  22. Am J Obstet Gynecol. 2012 Apr;206(4):314.e1-9 [PMID: 22464070]
  23. Neuroimage. 2012 Jul 16;61(4):1000-16 [PMID: 22484410]
  24. Anat Rec (Hoboken). 2013 Jan;296(1):123-32 [PMID: 23152308]
  25. Sci Transl Med. 2013 Jan 16;5(168):168ra7 [PMID: 23325800]
  26. Sci Transl Med. 2013 Jan 16;5(168):168ra8 [PMID: 23325801]
  27. Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9541-6 [PMID: 23696665]
  28. PLoS One. 2013 Jul 04;8(7):e68910 [PMID: 23861951]
  29. Pediatrics. 2014 Mar;133(3):412-21 [PMID: 24534406]
  30. J Comp Neurol. 1988 May 15;271(3):355-86 [PMID: 2454966]
  31. Neuroimage. 2014 Aug 1;96:288-99 [PMID: 24680870]
  32. J Neurosci. 2014 Apr 30;34(18):6214-23 [PMID: 24790192]
  33. IEEE Trans Med Imaging. 2014 Sep;33(9):1818-31 [PMID: 24816548]
  34. Neuroimage. 2015 Jan 15;105:32-44 [PMID: 25462697]
  35. Neuroimage. 2015 Feb 15;107:242-256 [PMID: 25498427]
  36. Neuroimage. 2015 May 1;111:580-9 [PMID: 25681570]
  37. Neuroimage. 2015 Jul 15;115:147-61 [PMID: 25944614]
  38. Cereb Cortex. 2016 Aug;26(8):3370-3378 [PMID: 26209848]
  39. Neuroimage. 2015 Nov 15;122:166-76 [PMID: 26236030]
  40. Neuroimage. 2016 Jan 15;125:456-478 [PMID: 26499811]
  41. NMR Biomed. 2016 Jan;29(1):33-47 [PMID: 26615981]
  42. Neuroimage. 2016 Nov 15;142:301-310 [PMID: 27395393]
  43. Arch Dis Child. 2017 Jan;102(1):97-102 [PMID: 27512082]
  44. J Neurosci. 2017 Feb 22;37(8):1971-1983 [PMID: 28069920]
  45. Neuroimage. 2017 Apr 1;149:379-392 [PMID: 28153637]
  46. Neuroimage. 2017 Nov 15;162:65-72 [PMID: 28801253]
  47. Ann Clin Transl Neurol. 2017 Aug 15;4(9):663-679 [PMID: 28904988]
  48. Neuroimage. 2018 Nov 15;182:360-369 [PMID: 28935239]
  49. Front Phys. 2017 Nov 28;28: [PMID: 29755979]
  50. Hum Neurobiol. 1987;6(1):1-9 [PMID: 3583840]
  51. Brain Res. 1984 Mar;315(1):117-24 [PMID: 6722572]
  52. J Neuropathol Exp Neurol. 1980 Jul;39(4):487-501 [PMID: 7217997]
  53. Histol Histopathol. 1997 Oct;12(4):895-900 [PMID: 9302548]
  54. J Comp Neurol. 1997 Oct 20;387(2):167-78 [PMID: 9336221]

Grants

  1. MR/K006355/1/Medical Research Council
  2. MR/L011530/1/Medical Research Council
  3. RP-PG-0707-10154/Department of Health

MeSH Term

Brain Mapping
Cerebral Cortex
Diffusion Magnetic Resonance Imaging
Female
Fetus
Gestational Age
Humans
Image Processing, Computer-Assisted
Infant, Newborn
Infant, Premature
Pregnancy

Word Cloud

Created with Highcharts 10.0.0weekscortical38densityPMAFAincreaseddendriticneuriteODIdevelopmentmeasuresMDarborisationageorganellevolumecurvature25NDIreflectedalterationsdiffusionMRIdMRImeancellularfalldominatedincreaseorientationdispersionNODDI47predictedincreasesindexgrowthHumanthirdtrimestercharacterisedmacro-microstructuralchangessignificantdecreasesdiffusivityfractionalanisotropyinterpretedreflectingHoweverstopsabruptlypost-menstrualtendsplateaucontinuessuggestingcomplexpictureraisinghypothesiscontinuingneuralrathergeometrytreestestusedimagingacquiringmulti-shellhighangularresolution99preterminfantsscannedrelativelyunchanginggeometricalstructureassociatedconstantlikelyonedriversgyrificationalsocorrelateshowslowerobserveddecreasethroughoutperioddecreasedplateauedroseevolutioncorrelatedRegionalanalysismicrostructurerevealedheterogenouspatternconfinedprimarymotorsensoryregionsresultssupportinterpretationshowspredominantincreasingDifferentpatternsmaturationgestationaldemonstratedvivoCerebralcortexDevelopmentNewbornPrematurityPreterm

Similar Articles

Cited By