Stimuli-responsive polymeric micelles for drug delivery and cancer therapy.

Qing Zhou, Li Zhang, TieHong Yang, Hong Wu
Author Information
  1. Qing Zhou: Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Military Medical University, Xi'an, People's Republic of China.
  2. Li Zhang: State Key Laboratory of Military Stomatology, Air Force Military Medical University, Xi'an, People's Republic of China.
  3. TieHong Yang: Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Military Medical University, Xi'an, People's Republic of China.
  4. Hong Wu: Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Military Medical University, Xi'an, People's Republic of China.

Abstract

Polymeric micelles (PMs) have been widely investigated as nanocarriers for drug delivery and cancer treatments due to their excellent physicochemical properties, drug loading and release capacities, facile preparation methods, biocompatibility, and tumor targetability. They can be easily engineered with various functional moieties to further improve their performance in terms of bioavailability, circulation time, tumor specificity, and anticancer activity. The stimuli-sensitive PMs capable of responding to various extra- and intracellular biological stimuli (eg, acidic pH, altered redox potential, and upregulated enzyme), as well as external artificial stimuli (eg, magnetic field, light, temperature, and ultrasound), are considered as "smart" nanocarriers for delivery of anticancer drugs and/or imaging agents for various therapeutic and diagnostic applications. In this article, the recent advances in the development of stimuli-responsive PMs for drug delivery, imaging, and cancer therapy are reviewed. The article covers the generalities of stimuli-responsive PMs with a focus on their major delivery strategies and newly emerging technologies/nanomaterials, discusses their drawbacks and limitations, and provides their future perspectives.

Keywords

References

  1. Adv Mater. 2013 Jul 26;25(28):3869-80 [PMID: 24048973]
  2. J Control Release. 2007 Nov 6;123(2):109-15 [PMID: 17894942]
  3. Biomaterials. 2005 Jun;26(18):3995-4021 [PMID: 15626447]
  4. Adv Drug Deliv Rev. 1998 May 4;31(3):197-221 [PMID: 10837626]
  5. Free Radic Biol Med. 2001 Jun 1;30(11):1191-212 [PMID: 11368918]
  6. Cancer Res. 2002 Jan 1;62(1):307-12 [PMID: 11782393]
  7. ACS Appl Mater Interfaces. 2014 Dec 24;6(24):22069-77 [PMID: 25487046]
  8. Chem Soc Rev. 2013 Sep 7;42(17):7468-83 [PMID: 22868906]
  9. J Control Release. 2005 Feb 16;102(3):583-94 [PMID: 15681081]
  10. Nat Nanotechnol. 2007 Dec;2(12):751-60 [PMID: 18654426]
  11. Biomaterials. 2017 Jul;133:94-106 [PMID: 28433941]
  12. ACS Appl Mater Interfaces. 2015 Dec 2;7(47):26315-25 [PMID: 26552849]
  13. Cancer Sci. 2009 Apr;100(4):572-9 [PMID: 19462526]
  14. Eur J Pharm Biopharm. 1999 Sep;48(2):101-11 [PMID: 10469928]
  15. Eur J Cancer Care (Engl). 2017 Mar;26(2): [PMID: 28004440]
  16. Biomater Sci. 2015 Feb;3(2):246-9 [PMID: 26218115]
  17. IEEE Trans Magn. 2013 Jan;49(1):231-235 [PMID: 23750047]
  18. Biomaterials. 2014 Oct;35(30):8711-22 [PMID: 25002267]
  19. Angew Chem Int Ed Engl. 2011 Dec 23;50(52):12505-9 [PMID: 22076783]
  20. J Immunol Methods. 2012 Aug 31;382(1-2):1-23 [PMID: 22658969]
  21. Biomaterials. 2014 Mar;35(9):3080-90 [PMID: 24388799]
  22. Adv Mater. 2012 Feb 7;24(6):785-91 [PMID: 22223403]
  23. Drug Deliv. 2002 Oct-Dec;9(4):253-8 [PMID: 12511204]
  24. Anal Chem. 1996 Jan 1;68(1):100-5 [PMID: 21619225]
  25. Cell Biochem Funct. 2004 Nov-Dec;22(6):343-52 [PMID: 15386533]
  26. Chem Commun (Camb). 2010 Aug 21;46(31):5668-70 [PMID: 20623050]
  27. Cell. 2010 Apr 2;141(1):52-67 [PMID: 20371345]
  28. Biomaterials. 2016 Apr;85:152-67 [PMID: 26871891]
  29. Langmuir. 2007 Dec 4;23(25):12669-76 [PMID: 17988160]
  30. Biomaterials. 2015 Aug;61:10-25 [PMID: 25996409]
  31. Theranostics. 2017 Apr 10;7(7):1806-1819 [PMID: 28638469]
  32. Nat Rev Cancer. 2012 Nov;12(11):782-92 [PMID: 23076158]
  33. J Control Release. 2013 Nov 28;172(1):69-76 [PMID: 23954370]
  34. J Biosci Bioeng. 2002;94(6):606-13 [PMID: 16233357]
  35. ACS Nano. 2012 May 22;6(5):4483-93 [PMID: 22540892]
  36. Methods Mol Biol. 2010;624:25-37 [PMID: 20217587]
  37. Biomaterials. 2014 Jan;35(1):337-43 [PMID: 24139764]
  38. ACS Appl Mater Interfaces. 2016 May 18;8(19):12063-74 [PMID: 27128684]
  39. J Control Release. 2009 Sep 15;138(3):268-76 [PMID: 19477208]
  40. Nat Rev Cancer. 2017 Jan;17(1):20-37 [PMID: 27834398]
  41. Adv Mater. 2012 Jun 5;24(21):2890-5 [PMID: 22539076]
  42. Biomaterials. 2016 Apr;86:92-105 [PMID: 26896610]
  43. Chem Commun (Camb). 2016 Aug 18;52(69):10525-8 [PMID: 27491357]
  44. Adv Drug Deliv Rev. 2014 Feb;66:58-73 [PMID: 24060922]
  45. J Control Release. 2001 Jul 6;74(1-3):295-302 [PMID: 11489509]
  46. Biomaterials. 2010 Sep;31(27):7124-31 [PMID: 20580429]
  47. ACS Nano. 2011 Nov 22;5(11):8629-39 [PMID: 21974862]
  48. Chem Rec. 2007;7(5):286-94 [PMID: 17924441]
  49. Macromol Rapid Commun. 2012 May 14;33(9):811-8 [PMID: 22488562]
  50. J Control Release. 2002 Nov 7;84(1-2):39-47 [PMID: 12399166]
  51. Chem Commun (Camb). 2015 Jun 21;51(49):9995-8 [PMID: 25998105]
  52. J Control Release. 2010 Jun 1;144(2):259-66 [PMID: 20188131]
  53. Nanoscale. 2014 Nov 7;6(21):12273-86 [PMID: 25251024]
  54. Langmuir. 2014 Aug 12;30(31):9524-32 [PMID: 25072274]
  55. Macromol Rapid Commun. 2010 Sep 15;31(18):1588-607 [PMID: 21567570]
  56. Macromol Rapid Commun. 2011 Jul 15;32(14):1077-81 [PMID: 21674666]
  57. J Mater Chem B. 2013 Nov 21;1(43):5942-5949 [PMID: 32261061]
  58. Bioconjug Chem. 2011 Oct 19;22(10):1939-45 [PMID: 21866903]
  59. J Control Release. 2009 Oct 1;139(1):31-9 [PMID: 19523500]
  60. Biomaterials. 2014 Aug;35(24):6622-35 [PMID: 24814427]
  61. J Drug Target. 2007 Nov;15(9):553-84 [PMID: 17968711]
  62. Eur J Immunol. 1989 Sep;19(9):1709-14 [PMID: 2792186]
  63. Acta Biomater. 2015 Mar;15:117-26 [PMID: 25595473]
  64. Trends Biotechnol. 2017 Feb;35(2):159-171 [PMID: 27492049]
  65. Acta Biomater. 2014 Mar;10(3):1259-71 [PMID: 24365708]
  66. Biomacromolecules. 2014 Feb 10;15(2):628-34 [PMID: 24432713]
  67. Langmuir. 2014 Jan 14;30(1):410-7 [PMID: 24328893]
  68. Carcinogenesis. 2009 Jul;30(7):1073-81 [PMID: 19468060]
  69. Biomacromolecules. 2003 Nov-Dec;4(6):1733-9 [PMID: 14606903]
  70. Nat Nanotechnol. 2011 Oct 23;6(12):815-23 [PMID: 22020122]
  71. Acta Biomater. 2008 Nov;4(6):1752-61 [PMID: 18524701]
  72. Int J Pharm. 2015 Aug 1;491(1-2):152-61 [PMID: 26095914]
  73. Chem Commun (Camb). 2015 Jan 11;51(3):465-8 [PMID: 25327260]
  74. J Control Release. 2002 Oct 4;83(2):303-5 [PMID: 12363455]
  75. Chem Soc Rev. 2014 Sep 7;43(17):6254-87 [PMID: 24811160]
  76. Invest New Drugs. 2011 Oct;29(5):1029-37 [PMID: 20179989]
  77. J Drug Target. 2014 Aug;22(7):584-99 [PMID: 25012066]
  78. Biomaterials. 2017 Nov;145:138-153 [PMID: 28863308]
  79. ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3388-3399 [PMID: 28071889]
  80. Int J Pharm. 2012 Jun 15;429(1-2):113-22 [PMID: 22406331]
  81. J Control Release. 2006 Sep 28;115(1):46-56 [PMID: 16920217]
  82. Biomaterials. 2014 Feb;35(6):2079-88 [PMID: 24331704]
  83. Biomaterials. 2012 Mar;33(7):2310-20 [PMID: 22166223]
  84. Biomaterials. 2007 Jan;28(1):99-107 [PMID: 16959312]
  85. J Control Release. 2011 Jul 15;153(1):4-15 [PMID: 21277919]
  86. Nat Rev Drug Discov. 2005 Mar;4(3):255-60 [PMID: 15738980]
  87. Biomaterials. 2004 Aug;25(17):3793-805 [PMID: 15020155]
  88. J Mater Chem B. 2015 Jan 14;3(2):260-269 [PMID: 32261946]
  89. J Control Release. 2013 Aug 10;169(3):171-9 [PMID: 23306022]
  90. ACS Nano. 2011 Nov 22;5(11):8591-9 [PMID: 21967065]
  91. Chem Rev. 2009 Feb;109(2):259-302 [PMID: 19053809]
  92. Biomaterials. 2013 Jan;34(4):1213-22 [PMID: 23102622]
  93. AAPS PharmSciTech. 2015 Feb;16(1):10-20 [PMID: 25501872]
  94. Biomaterials. 2014 Mar;35(9):3132-44 [PMID: 24439411]
  95. ACS Appl Mater Interfaces. 2017 Aug 9;9(31):25706-25716 [PMID: 28741924]
  96. Langmuir. 2009 Aug 4;25(15):8442-6 [PMID: 20050041]
  97. Adv Drug Deliv Rev. 2008 May 22;60(8):899-914 [PMID: 18406004]
  98. J Control Release. 2014 Sep 28;190:465-76 [PMID: 24993430]
  99. Nat Rev Cancer. 2002 Mar;2(3):161-74 [PMID: 11990853]
  100. Biochim Biophys Acta. 2004 Oct 11;1665(1-2):134-41 [PMID: 15471579]
  101. Bioconjug Chem. 2003 May-Jun;14(3):546-53 [PMID: 12757378]
  102. Cancer Discov. 2017 Feb;7(2):165-176 [PMID: 27979832]
  103. J Biomed Nanotechnol. 2012 Dec;8(6):983-90 [PMID: 23030006]
  104. Technol Cancer Res Treat. 2007 Feb;6(1):49-56 [PMID: 17241100]
  105. J Control Release. 2009 Jul 1;137(1):63-8 [PMID: 19303426]
  106. Biomaterials. 2008 Feb;29(4):497-505 [PMID: 17959241]
  107. Pharm Res. 2007 Jun;24(6):1029-46 [PMID: 17385025]
  108. Mol Pharm. 2010 Dec 6;7(6):1959-73 [PMID: 20957997]
  109. Invest Radiol. 1997 Dec;32(12):723-7 [PMID: 9406011]
  110. Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):17047-52 [PMID: 24062440]
  111. Chem Soc Rev. 2012 Sep 21;41(18):5933-49 [PMID: 22695880]
  112. Br J Cancer. 2004 Jun 1;90(11):2085-91 [PMID: 15150584]
  113. Biomaterials. 2018 Feb;154:169-181 [PMID: 29128845]
  114. J Phys Chem B. 2005 Feb 24;109(7):3071-6 [PMID: 16851322]
  115. Angew Chem Int Ed Engl. 2003 Oct 6;42(38):4640-3 [PMID: 14533151]
  116. Int J Pharm. 2014 Dec 10;476(1-2):31-40 [PMID: 25260217]
  117. J Am Chem Soc. 2014 Jun 11;136(23):8169-72 [PMID: 24848124]
  118. Cancer Chemother Pharmacol. 2017 Apr;79(4):637-649 [PMID: 28314988]
  119. Nanotechnology. 2009 Jul 29;20(30):305101 [PMID: 19581698]
  120. Biomaterials. 2004 Aug;25(19):4719-30 [PMID: 15120518]
  121. Biomaterials. 2014 Apr;35(13):4213-22 [PMID: 24529391]
  122. Nanomedicine (Lond). 2007 Feb;2(1):23-39 [PMID: 17716188]
  123. Acta Biomater. 2016 Sep 15;42:232-246 [PMID: 27373437]
  124. Acta Biomater. 2015 Mar;14:115-24 [PMID: 25498306]
  125. J Mater Chem B. 2013 Apr 7;1(13):1860-1868 [PMID: 32261152]
  126. J Mater Chem B. 2018 Apr 21;6(15):2230-2239 [PMID: 32254563]
  127. Pharm Res. 2007 Jan;24(1):1-16 [PMID: 17109211]
  128. J Control Release. 2001 Jun 15;73(2-3):137-72 [PMID: 11516494]
  129. Eur J Radiol. 2011 Dec;80(3):699-705 [PMID: 20810233]
  130. Angew Chem Int Ed Engl. 2003 Jul 14;42(27):3153-8 [PMID: 12866105]
  131. Int J Pharm. 2013 Mar 10;445(1-2):117-24 [PMID: 23384729]
  132. Biomaterials. 2012 Jun;33(18):4576-88 [PMID: 22445255]

MeSH Term

Antineoplastic Agents
Drug Carriers
Drug Delivery Systems
Humans
Hydrogen-Ion Concentration
Micelles
Nanostructures
Neoplasms
Polymers
Temperature

Chemicals

Antineoplastic Agents
Drug Carriers
Micelles
Polymers

Word Cloud

Created with Highcharts 10.0.0deliverydrugPMscancermicellesvariousstimuli-responsivetherapynanocarrierstumoranticancerstimuliegimagingarticlepolymericPolymericwidelyinvestigatedtreatmentsdueexcellentphysicochemicalpropertiesloadingreleasecapacitiesfacilepreparationmethodsbiocompatibilitytargetabilitycaneasilyengineeredfunctionalmoietiesimproveperformancetermsbioavailabilitycirculationtimespecificityactivitystimuli-sensitivecapablerespondingextra-intracellularbiologicalacidicpHalteredredoxpotentialupregulatedenzymewellexternalartificialmagneticfieldlighttemperatureultrasoundconsidered"smart"drugsand/oragentstherapeuticdiagnosticapplicationsrecentadvancesdevelopmentreviewedcoversgeneralitiesfocusmajorstrategiesnewlyemergingtechnologies/nanomaterialsdiscussesdrawbackslimitationsprovidesfutureperspectivesStimuli-responsivenanomedicine

Similar Articles

Cited By