Tunable Elastomers with an Antithrombotic Component for Cardiovascular Applications.

Alexander M Stahl, Yunzhi Peter Yang
Author Information
  1. Alexander M Stahl: Department of Chemistry, Stanford University, Stanford, CA, 94305, USA. ORCID
  2. Yunzhi Peter Yang: Department of Orthopaedic Surgery, Stanford University, Stanford, CA, 94305, USA.

Abstract

This study reports the development of a novel family of biodegradable polyurethanes for use as tissue engineered cardiovascular scaffolds or blood-contacting medical devices. Covalent incorporation of the antiplatelet agent dipyridamole into biodegradable polycaprolactone-based polyurethanes yields biocompatible materials with improved thromboresistance and tunable mechanical strength and elasticity. Altering the ratio of the dipyridamole to the diisocyanate linking unit and the polycaprolactone macromer enables control over both the drug content and the polymer cross-link density. Covalent cross-linking in the materials achieves significant elasticity and a tunable range of elastic moduli similar to that of native cardiovascular tissues. Interestingly, the cross-link density of the polyurethanes is inversely related to the elastic modulus, an effect attributed to decreasing crystallinity in the more cross-linked polymers. In vitro characterization shows that the antiplatelet agent is homogeneously distributed in the materials and is released slowly throughout the polymer degradation process. The drug-containing polyurethanes support endothelial cell and vascular smooth muscle cell proliferation, while demonstrating reduced levels of platelet adhesion and activation, supporting their candidacy as promising substrates for cardiovascular tissue engineering.

Keywords

References

  1. J Biomater Appl. 2014 Oct;29(4):557-65 [PMID: 24913612]
  2. J Thorac Cardiovasc Surg. 2010 Feb;139(2):431-6, 436.e1-2 [PMID: 20106404]
  3. Acta Biomater. 2010 Jul;6(7):2467-76 [PMID: 20144914]
  4. Biomaterials. 2007 Dec;28(36):5407-17 [PMID: 17915310]
  5. Biomaterials. 2010 Mar;31(7):1626-35 [PMID: 19962188]
  6. Eur J Vasc Endovasc Surg. 1998 May;15(5):416-22 [PMID: 9633497]
  7. ACS Biomater Sci Eng. 2017 Jul 10;3(7):1175-1194 [PMID: 33440508]
  8. J Biomed Mater Res B Appl Biomater. 2007 Jul;82(1):100-8 [PMID: 17078085]
  9. Tissue Eng Part B Rev. 2016 Feb;22(1):68-100 [PMID: 26447530]
  10. Nat Med. 2012 Jul;18(7):1148-53 [PMID: 22729285]
  11. Clin Exp Pharmacol Physiol. 2009 Feb;36(2):225-37 [PMID: 19220329]
  12. Expert Rev Med Devices. 2012 Nov;9(6):577-94 [PMID: 23249154]
  13. Circ Res. 1975 Oct;37(4):509-20 [PMID: 1182942]
  14. Mater Sci Eng C Mater Biol Appl. 2015 Apr;49:541-548 [PMID: 25686982]
  15. Circulation. 1992 Jul;86(1):232-46 [PMID: 1535570]
  16. ACS Biomater Sci Eng. 2017 May 8;3(5):712-723 [PMID: 33440496]
  17. J Biomed Mater Res. 2001 Feb;54(2):224-33 [PMID: 11093182]
  18. Surgery. 1982 Dec;92(6):947-52 [PMID: 6216621]
  19. Arterioscler Thromb. 1994 Jul;14(7):1223-31 [PMID: 8018679]
  20. Eur J Pharm Sci. 2009 Feb 15;36(2-3):310-9 [PMID: 19022379]
  21. Nat Biotechnol. 2016 Mar;34(3):312-9 [PMID: 26878319]
  22. Circulation. 2007 Oct 16;116(16):1795-800 [PMID: 17893279]
  23. Expert Opin Biol Ther. 2015;15(8):1155-72 [PMID: 26027436]
  24. J Biomed Mater Res A. 2017 Mar;105(3):927-940 [PMID: 27813288]
  25. Heart. 2007 Jan;93(1):137-42 [PMID: 17170355]
  26. J Surg Res. 1984 Jan;36(1):80-8 [PMID: 6228692]
  27. J Am Coll Cardiol. 2010 Aug 3;56(6):510-20 [PMID: 20670763]
  28. Macromol Biosci. 2005 May 23;5(5):415-23 [PMID: 15895476]
  29. J Heart Valve Dis. 1999 Nov;8(6):687-96 [PMID: 10616249]
  30. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 1997 Dec;14(4):334-7 [PMID: 11367622]
  31. J Biomed Mater Res B Appl Biomater. 2016 Jan;104(1):210-7 [PMID: 25631281]
  32. Mater Sci Eng C Mater Biol Appl. 2016 Jul 1;64:61-73 [PMID: 27127029]
  33. Biomaterials. 2008 Dec;29(35):4637-49 [PMID: 18801566]
  34. Sci Rep. 2016 Jun 06;6:26848 [PMID: 27264087]
  35. J Vasc Surg. 2000 Aug;32(2):268-77 [PMID: 10917986]
  36. Transfus Med Rev. 2007 Oct;21(4):295-306 [PMID: 17900491]
  37. J Pathol. 2000 Feb;190(3):292-9 [PMID: 10685063]
  38. ASAIO J. 1994 Jul-Sep;40(3):M273-8 [PMID: 8555523]
  39. J Cell Biol. 1984 Sep;99(3):822-9 [PMID: 6088559]
  40. World J Surg. 2012 Jul;36(7):1581-91 [PMID: 22395345]
  41. Adv Mater. 2013 Feb 25;25(8):1209-15 [PMID: 23239051]
  42. Biomed Eng Online. 2013 Dec 13;12:129 [PMID: 24330653]
  43. J Biomech. 1991;24(5):331-9 [PMID: 1904875]
  44. Shock. 2014 May;41 Suppl 1:54-61 [PMID: 24169210]
  45. Acta Biomater. 2014 Jan;10(1):308-17 [PMID: 24013025]
  46. Ann Thorac Surg. 2003 Dec;76(6):S2230-9 [PMID: 14667692]
  47. Circulation. 2008 Jan 22;117(3):429-39 [PMID: 18212300]
  48. Acta Biomater. 2014 Nov;10(11):4618-4628 [PMID: 25110284]
  49. Tissue Eng. 2006 Oct;12(10):2717-27 [PMID: 17518641]
  50. Mater Sci Eng C Mater Biol Appl. 2013 Jul 1;33(5):2550-4 [PMID: 23623067]
  51. J Biomed Mater Res. 2002 Sep 5;61(3):493-503 [PMID: 12115475]
  52. J Mater Chem B. 2014 Jun 21;2(23):3626-3635 [PMID: 32263799]
  53. Biomaterials. 2006 Mar;27(9):1735-40 [PMID: 16198413]
  54. Cells Tissues Organs. 2012;195(1-2):144-58 [PMID: 21996786]
  55. Cell Cycle. 2004 Jun;3(6):811-6 [PMID: 15118409]

Grants

  1. R01 AR057837/NIAMS NIH HHS
  2. U01 AR069395/NIAMS NIH HHS

MeSH Term

Cell Proliferation
Dipyridamole
Elastomers
Human Umbilical Vein Endothelial Cells
Humans
Myocytes, Smooth Muscle
Platelet Aggregation Inhibitors
Polyesters
Polymers
Polyurethanes
Spectroscopy, Fourier Transform Infrared
Tissue Engineering

Chemicals

Elastomers
Platelet Aggregation Inhibitors
Polyesters
Polymers
Polyurethanes
polycaprolactone
Dipyridamole

Word Cloud

Created with Highcharts 10.0.0polyurethanescardiovascularbiodegradabletissuematerialsCovalentantiplateletagentdipyridamoletunableelasticitypolymercross-linkdensityelasticcellengineeringstudyreportsdevelopmentnovelfamilyuseengineeredscaffoldsblood-contactingmedicaldevicesincorporationpolycaprolactone-basedyieldsbiocompatibleimprovedthromboresistancemechanicalstrengthAlteringratiodiisocyanatelinkingunitpolycaprolactonemacromerenablescontroldrugcontentcross-linkingachievessignificantrangemodulisimilarnativetissuesInterestinglyinverselyrelatedmoduluseffectattributeddecreasingcrystallinitycross-linkedpolymersvitrocharacterizationshowshomogeneouslydistributedreleasedslowlythroughoutdegradationprocessdrug-containingsupportendothelialvascularsmoothmuscleproliferationdemonstratingreducedlevelsplateletadhesionactivationsupportingcandidacypromisingsubstratesTunableElastomersAntithromboticComponentCardiovascularApplicationsantithromboticselastomerspolyurethane

Similar Articles

Cited By (4)