Prenatal Exposure to Alcohol Induces Functional and Structural Plasticity in Dopamine D1 Receptor-Expressing Neurons of the Dorsomedial Striatum.

Yifeng Cheng, Xuehua Wang, Xiaoyan Wei, Xueyi Xie, Sebastian Melo, Rajesh C Miranda, Jun Wang
Author Information
  1. Yifeng Cheng: Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas.
  2. Xuehua Wang: Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas.
  3. Xiaoyan Wei: Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas.
  4. Xueyi Xie: Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas.
  5. Sebastian Melo: Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas.
  6. Rajesh C Miranda: Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas.
  7. Jun Wang: Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas. ORCID

Abstract

BACKGROUND: Prenatal alcohol exposure (PAE) is a leading cause of hyperactivity in children. Excitation of dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) of the dorsomedial striatum (DMS), a brain region that controls voluntary behavior, is known to induce hyperactivity in mice. We therefore hypothesized that PAE-linked hyperactivity was due to persistently altered glutamatergic activity in DMS D1-MSNs.
METHODS: Female Ai14 tdTomato reporter mice were given access to alcohol in an intermittent access, 2-bottle choice paradigm before pregnancy, and following mating with male D1-Cre mice, through the pregnancy period, and until postnatal day (P) 10. Locomotor activity was tested in juvenile (P21) and adult (P133) offspring, and alcohol-conditioned place preference (CPP) was measured in adult offspring. Glutamatergic activity in DMS D1-MSNs of adult PAE and control mice was measured by slice electrophysiology, followed by measurements of dendritic morphology.
RESULTS: Our voluntary maternal alcohol consumption model resulted in increased locomotor activity in juvenile PAE mice, and this hyperactivity was maintained into adulthood. Furthermore, PAE resulted in a higher alcohol-induced CPP in adult offspring. Glutamatergic activity onto DMS D1-MSNs was also enhanced by PAE. Finally, PAE increased dendritic complexity in DMS D1-MSNs in adult offspring.
CONCLUSIONS: Our model of PAE does result in persistent hyperactivity in offspring. In adult PAE offspring, hyperactivity is accompanied by potentiated glutamatergic strength and afferent connectivity in DMS D1-MSNs, an outcome that is also consistent with the observed increase in alcohol preference in PAE offspring. Consequently, a PAE-sensitive circuit, centered within the D1-MSN, may be linked to behavioral outcomes of PAE.

Keywords

References

  1. Nat Rev Neurosci. 2008 Nov;9(11):813-25 [PMID: 18854855]
  2. eNeuro. 2016 Nov 8;3(5): [PMID: 27844059]
  3. Alcohol. 2012 Sep;46(6):585-93 [PMID: 22698870]
  4. Neuropsychol Rev. 2011 Jun;21(2):73-80 [PMID: 21499711]
  5. Alcohol Clin Exp Res. 2017 Feb;41(2):334-344 [PMID: 28075019]
  6. Alcohol Clin Exp Res. 2017 May;41(5):1004-1011 [PMID: 28294365]
  7. JAMA. 2018 Feb 6;319(5):474-482 [PMID: 29411031]
  8. Alcohol. 2012 Sep;46(6):577-84 [PMID: 22749340]
  9. Trends Neurosci. 2012 Sep;35(9):557-64 [PMID: 22858522]
  10. Behav Neurosci. 2005 Feb;119(1):302-10 [PMID: 15727534]
  11. J Anat. 1953 Oct;87(4):387-406 [PMID: 13117757]
  12. J Negat Results Biomed. 2015 Dec 02;14:19 [PMID: 26627643]
  13. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2915-20 [PMID: 19202072]
  14. PLoS One. 2012;7(8):e42443 [PMID: 22916128]
  15. Neuropsychol Rev. 2011 Jun;21(2):81-101 [PMID: 21503685]
  16. Biochem Cell Biol. 2018 Apr;96(2):241-251 [PMID: 28521112]
  17. Annu Rev Neurosci. 2011;34:441-66 [PMID: 21469956]
  18. Psychopharmacology (Berl). 2002 Oct;163(3-4):362-80 [PMID: 12373437]
  19. Nature. 2010 Jul 29;466(7306):622-6 [PMID: 20613723]
  20. Nat Rev Neurosci. 2016 Sep;17(9):576-91 [PMID: 27444358]
  21. Behav Pharmacol. 2012 Feb;23(1):105-12 [PMID: 22157142]
  22. Front Pediatr. 2014 Sep 03;2:93 [PMID: 25232537]
  23. Physiol Behav. 2015 Sep 1;148:45-50 [PMID: 25447751]
  24. Biol Psychiatry. 2017 Jun 1;81(11):918-929 [PMID: 27470168]
  25. Nat Neurosci. 2012 Jun;15(6):816-8 [PMID: 22544310]
  26. Alcohol Clin Exp Res. 2017 Sep;41(9):1648-1655 [PMID: 28727159]
  27. Encephale. 2009 Apr;35(2):107-14 [PMID: 19393378]
  28. J Neurosci. 2013 Nov 20;33(47):18531-9 [PMID: 24259575]
  29. Alcohol Clin Exp Res. 2011 Nov;35(11):1938-47 [PMID: 21631540]
  30. Annu Rev Physiol. 2016;78:327-50 [PMID: 26667072]
  31. Behav Brain Res. 2011 Oct 1;223(2):376-87 [PMID: 21601595]
  32. J Child Adolesc Psychopharmacol. 2006 Dec;16(6):777-89 [PMID: 17201621]
  33. Am J Occup Ther. 2008 May-Jun;62(3):265-73 [PMID: 18557002]
  34. Alcohol Clin Exp Res. 2016 Jan;40(1):18-32 [PMID: 26727519]
  35. Nat Neurosci. 2018 Mar;21(3):373-383 [PMID: 29434375]
  36. Neuron. 2015 Oct 21;88(2):298-305 [PMID: 26439527]
  37. PLoS Genet. 2010 Jan 15;6(1):e1000811 [PMID: 20084100]
  38. Pharmacol Biochem Behav. 2007 Oct;87(4):462-71 [PMID: 17644167]
  39. Cell. 2015 Aug 13;162(4):712-25 [PMID: 26276628]
  40. Nat Neurosci. 2011 Feb;14(2):154-62 [PMID: 21270784]
  41. Eur J Neurosci. 2007 Jun;25(11):3226-32 [PMID: 17552991]
  42. J Child Psychol Psychiatry. 2016 Mar;57(3):321-49 [PMID: 26705858]
  43. Brain Res Dev Brain Res. 2003 Apr 14;142(1):89-99 [PMID: 12694947]
  44. Addict Biol. 2018 Mar;23(2):569-584 [PMID: 28436559]
  45. Neurotoxicol Teratol. 2010 Jul-Aug;32(4):472-80 [PMID: 20211721]
  46. Brain Res Dev Brain Res. 2001 Feb 28;126(2):147-55 [PMID: 11248348]
  47. J Biomed Sci. 2010 Nov 12;17:85 [PMID: 21073715]
  48. Bioinformatics. 2011 Sep 1;27(17):2453-4 [PMID: 21727141]
  49. J Neurosci. 2007 Mar 28;27(13):3593-602 [PMID: 17392475]
  50. Behav Brain Res. 2016 Sep 15;311:70-80 [PMID: 27185739]
  51. Trends Neurosci. 2010 Mar;33(3):121-9 [PMID: 20138375]
  52. J Neurosci. 2015 Aug 19;35(33):11634-43 [PMID: 26290240]
  53. Behav Brain Res. 2013 Sep 1;252:326-33 [PMID: 23756143]
  54. Cereb Cortex. 2009 Apr;19(4):849-60 [PMID: 18689859]
  55. Alcohol Clin Exp Res. 2014 Feb;38(2):529-37 [PMID: 24428701]
  56. Ann N Y Acad Sci. 2008 Nov;1144:154-75 [PMID: 19076375]
  57. Neurochem Res. 2013 Mar;38(3):620-31 [PMID: 23283698]
  58. Nat Methods. 2014 Oct;11(10):982-4 [PMID: 25264773]

Grants

  1. R01 AA021505/NIAAA NIH HHS
  2. R01 AA024659/NIAAA NIH HHS
  3. U01 AA025932/NIAAA NIH HHS

Word Cloud

Created with Highcharts 10.0.0PAEoffspringhyperactivityD1-MSNsDMSadultmiceactivityalcoholPrenatalD1voluntaryglutamatergicaccesspregnancyjuvenilepreferenceCPPmeasuredGlutamatergicdendriticmodelresultedincreasedalsoExposureAlcoholPlasticityStriatumBACKGROUND:exposureleadingcausechildrenExcitationdopaminereceptor-expressingmediumspinyneuronsdorsomedialstriatumbrainregioncontrolsbehaviorknowninducethereforehypothesizedPAE-linkedduepersistentlyalteredMETHODS:FemaleAi14tdTomatoreportergivenintermittent2-bottlechoiceparadigmfollowingmatingmaleD1-CreperiodpostnataldayP10LocomotortestedP21P133alcohol-conditionedplacecontrolsliceelectrophysiologyfollowedmeasurementsmorphologyRESULTS:maternalconsumptionlocomotormaintainedadulthoodFurthermorehigheralcohol-inducedontoenhancedFinallycomplexityCONCLUSIONS:resultpersistentaccompaniedpotentiatedstrengthafferentconnectivityoutcomeconsistentobservedincreaseConsequentlyPAE-sensitivecircuitcenteredwithinD1-MSNmaylinkedbehavioraloutcomesInducesFunctionalStructuralDopamineReceptor-ExpressingNeuronsDorsomedialDendriticSpinesDorsalFetalSynaptic

Similar Articles

Cited By