Air-Conducted Vestibular Evoked Myogenic Potential Testing in Children, Adolescents, and Young Adults: Thresholds, Frequency Tuning, and Effects of Sound Exposure.

Amanda I Rodriguez, Megan L A Thomas, Kristen L Janky
Author Information
  1. Amanda I Rodriguez: Department of Research, Boys Town National Research Hospital, Omaha, Nebraska, USA.
  2. Megan L A Thomas: Department of Audiology, Boys Town National Research Hospital, Omaha, Nebraska, USA.
  3. Kristen L Janky: Department of Audiology, Boys Town National Research Hospital, Omaha, Nebraska, USA.

Abstract

OBJECTIVES: Pediatric vestibular evaluations incorporate cervical and ocular vestibular evoked myogenic potential (c- and oVEMP, respectively) testing; however, in children, c- and oVEMP thresholds have been minimally investigated and frequency tuning is unknown. Children are also at risk for unsafe sound exposure secondary to VEMP. While it is unknown if VEMP threshold testing leads to cochlear changes, it is possible that this risk increases due to the increased number of trials needed to obtain a threshold. Obtaining VEMP thresholds at various frequencies in children provides further information for pediatric normative VEMP data. Assessing for cochlear changes after VEMP threshold testing would provide information on the safety of threshold VEMP testing in children. The objectives of this study were to (1) characterize c- and oVEMP thresholds in children, adolescents, and young adults with normal hearing using 500 and 750 Hz tone burst (TB) stimuli, (2) compare frequency tuning of 500 and 750 Hz TB, and (3) assess whether cochlear changes exist after VEMP threshold testing. It is hypothesized that children, adolescents, and young adults would not show age-related changes to the vestibular system. Therefore, reliable VEMP thresholds would be seen below maximum acoustical stimulation levels (e.g., <125 dB SPL) and frequency tuning will be similar for 500 and 750 Hz TB stimuli.
DESIGN: Ten children (age 4-9), 10 adolescents (age 10-19), and 10 young adults (age 20-29) with normal hearing and tympanometry participated. All subjects received c- and oVEMP testing at maximum stimulation and threshold. To address frequency tuning, but not exceed recommended sound exposure allowance, subjects received a 500 Hz TB stimulus in one ear and a 750 Hz TB stimulus in the other ear. Subjects completed tympanometry pre-VEMP, and audiometric threshold testing, distortion product otoacoustic emission testing, and subjective questionnaire pre- and post-VEMP to study the effect of VEMP exposure on cochlear function for each stimulus frequency.
RESULTS: (1) cVEMP thresholds were determined for both stimulus frequencies for children (500 Hz = 106 dB SPL; 750 Hz = 106 dB SPL), adolescents (500 Hz = 107.5 dB SPL; 750 Hz = 109.5 dB SPL), and young adults (500 Hz = 111.5 dB SPL; 750 Hz = 112 dB SPL). oVEMP thresholds were also obtained in response to both stimulus frequencies for children (500 Hz = 111.1 dB SPL; 750 Hz = 112.2 dB SPL), adolescents (500 Hz = 112.5 dB SPL; 750 Hz = 114.5 dB SPL), and young adults (500 Hz = 116 dB SPL; 750 Hz = 117 dB SPL). Similar thresholds were found between groups except for children who had significantly lower thresholds compared with adults for cVEMP (500 Hz: p = 0.002; 750 Hz: p = 0.004) and oVEMP (500 Hz: p = 0.01; 750 Hz: p = 0.02). In addition, equivalent ear-canal volume and VEMP thresholds were linearly correlated. (2) There was no significant effect of stimulus frequency on VEMP response rates, latencies, peak to peak amplitudes, or thresholds, suggesting similar frequency tuning for 500 and 750 Hz. (3) There were no significant effects of VEMP threshold testing on cochlear function for either stimulus frequency.
CONCLUSIONS: Children, adolescents, and young adults show VEMP thresholds below high stimulation levels and had similar frequency tuning between 500 and 750 Hz. Use of 750 Hz could be regarded as the safer stimuli due to its shorter duration and thus reduced sound exposure. Children with smaller ear-canal volume had present responses at maximum stimulation and lower thresholds, suggesting that VEMP testing could be initiated at lower acoustic levels to minimize sound exposure and optimize testing.

References

  1. Arch Otolaryngol Head Neck Surg. 1999 Jun;125(6):660-4 [PMID: 10367923]
  2. J Am Acad Audiol. 2000 Feb;11(2):97-102 [PMID: 10685676]
  3. Percept Mot Skills. 2000 Jun;90(3 Pt 2):1101-12 [PMID: 10939054]
  4. Otol Neurotol. 2001 Nov;22(6):796-802 [PMID: 11698798]
  5. J Am Acad Audiol. 2003 Nov;14(9):500-9; quiz 534-5 [PMID: 14708838]
  6. J Vestib Res. 2003;13(2-3):121-30 [PMID: 14757915]
  7. Ear Hear. 1992 Dec;13(6):442-53 [PMID: 1487106]
  8. Otol Neurotol. 2004 May;25(3):333-8 [PMID: 15129114]
  9. Int J Pediatr Otorhinolaryngol. 2004 Nov;68(11):1455-8 [PMID: 15488981]
  10. Otol Neurotol. 2004 Nov;25(6):977-80 [PMID: 15547429]
  11. Laryngoscope. 2005 Aug;115(8):1440-4 [PMID: 16094120]
  12. Neurology. 1992 Aug;42(8):1635-6 [PMID: 1641165]
  13. Laryngoscope. 2006 Jun;116(6):895-900 [PMID: 16735887]
  14. Audiol Neurootol. 2007;12(1):59-63 [PMID: 17119334]
  15. Clin Neurophysiol. 2007 Feb;118(2):381-90 [PMID: 17141563]
  16. Clin Neurophysiol. 2007 May;118(5):1105-9 [PMID: 17368089]
  17. Int J Pediatr Otorhinolaryngol. 2007 Nov;71(11):1797-802 [PMID: 17870186]
  18. Clin Neurophysiol. 2007 Dec;118(12):2745-51 [PMID: 17905655]
  19. Audiol Neurootol. 2008;13(3):145-52 [PMID: 18087148]
  20. Clin Neurophysiol. 2009 Jul;120(7):1381-5 [PMID: 19443267]
  21. Clin Neurophysiol. 2009 Oct;120(10):1841-4 [PMID: 19717336]
  22. J Am Acad Audiol. 2009 Sep;20(8):514-22 [PMID: 19764171]
  23. Clin Neurophysiol. 2010 Jan;121(1):85-9 [PMID: 19892592]
  24. J Vestib Res. 2009;19(1-2):33-40 [PMID: 19893195]
  25. Clin Neurophysiol. 2010 Feb;121(2):132-44 [PMID: 19897412]
  26. Clin Neurophysiol. 2010 Jun;121(6):978-80 [PMID: 20202896]
  27. Otol Neurotol. 2010 Jul;31(5):793-802 [PMID: 20517167]
  28. Clin Neurophysiol. 2011 Mar;122(3):611-616 [PMID: 20709596]
  29. Laryngoscope. 2011 Jan;121(1):220-5 [PMID: 21132770]
  30. Clin Neurophysiol. 2011 Nov;122(11):2282-9 [PMID: 21550301]
  31. J Am Acad Audiol. 2011 Apr;22(4):222-30 [PMID: 21586257]
  32. J Physiol. 2012 Jul 1;590(13):3091-101 [PMID: 22526888]
  33. Ear Hear. 2012 Nov-Dec;33(6):768-71 [PMID: 22836238]
  34. Otol Neurotol. 2012 Oct;33(8):1392-400 [PMID: 22935811]
  35. Laryngoscope. 2013 Feb;123(2):512-7 [PMID: 22965888]
  36. Exp Brain Res. 2013 Feb;224(3):437-45 [PMID: 23161155]
  37. Clin Neurophysiol. 2013 Jun;124(6):1232-6 [PMID: 23333609]
  38. J Am Acad Audiol. 2013 Feb;24(2):77-88 [PMID: 23357802]
  39. Audiol Neurootol. 2013;18(3):143-51 [PMID: 23392310]
  40. Ear Hear. 2013 Nov-Dec;34(6):e65-73 [PMID: 23673615]
  41. Otol Neurotol. 2013 Sep;34(7):1186-92 [PMID: 23921920]
  42. Clin Neurophysiol. 2014 Apr;125(4):658-666 [PMID: 24513390]
  43. Ear Hear. 2014 Mar-Apr;35(2):e21-32 [PMID: 24556969]
  44. J Vestib Res. 2014;24(1):25-31 [PMID: 24594497]
  45. Otol Neurotol. 2014 Jun;35(5):932-3 [PMID: 24751736]
  46. Audiol Neurootol. 2014;19(4):239-47 [PMID: 24993062]
  47. J Am Acad Audiol. 2014 Mar;25(3):268-77 [PMID: 25032971]
  48. Medicine (Baltimore). 2014 Jun;93(4):e37 [PMID: 25068952]
  49. Clin Neurophysiol. 2015 Aug;126(8):1624-31 [PMID: 25511635]
  50. Otol Neurotol. 2015 Jul;36(6):961-4 [PMID: 25853612]
  51. Ear Hear. 2015 Sep-Oct;36(5):e251-60 [PMID: 25985018]
  52. Ear Hear. 2015 Nov-Dec;36(6):e364-72 [PMID: 26182202]
  53. Hear Res. 2016 Oct;340:43-49 [PMID: 26724755]
  54. J Am Acad Audiol. 2017 May;28(5):395-403 [PMID: 28534730]
  55. J Am Acad Audiol. 2017 Sep;28(8):708-717 [PMID: 28906242]
  56. Ear Hear. 2018 Mar/Apr;39(2):269-277 [PMID: 29466264]
  57. Ear Hear. 1984 Sep-Oct;5(5):268-80 [PMID: 6542036]
  58. Neurology. 1995 Oct;45(10):1927-9 [PMID: 7477996]
  59. J Neurol Neurosurg Psychiatry. 1994 Feb;57(2):190-7 [PMID: 8126503]
  60. J Acoust Soc Am. 1993 Nov;94(5):2617-38 [PMID: 8270739]
  61. Acta Otolaryngol. 1996 Sep;116(5):657-65 [PMID: 8908240]
  62. Am J Otol. 1997 May;18(3):355-60 [PMID: 9149831]

Grants

  1. P30 DC004662/NIDCD NIH HHS
  2. R03 DC015318/NIDCD NIH HHS
  3. T32 DC000013/NIDCD NIH HHS

MeSH Term

Acoustic Impedance Tests
Acoustic Stimulation
Adolescent
Adult
Audiometry
Child
Child, Preschool
Cochlea
Female
Healthy Volunteers
Humans
Male
Otoacoustic Emissions, Spontaneous
Sensory Thresholds
Sound
Vestibular Evoked Myogenic Potentials
Vestibular Function Tests
Young Adult

Word Cloud

Created with Highcharts 10.0.0Hz=750VEMP500dBSPLthresholdstestingchildrenfrequencythresholdadultsstimulusoVEMPtuningadolescentsyoungexposurecochlearTB5c-ChildrensoundchangesstimulationHz:p0vestibularfrequencies1stimuli2maximumlevelssimilarage112lowerunknownalsoriskdueinformationstudynormalhearing3show10tympanometrysubjectsreceivedeareffectfunctioncVEMP106111responseear-canalvolumesignificantpeaksuggestingOBJECTIVES:PediatricevaluationsincorporatecervicalocularevokedmyogenicpotentialrespectivelyhoweverminimallyinvestigatedunsafesecondaryleadspossibleincreasesincreasednumbertrialsneededobtainObtainingvariousprovidespediatricnormativedataAssessingprovidesafetyobjectivescharacterizeusingtoneburstcompareassesswhetherexisthypothesizedage-relatedsystemThereforereliableseenacousticaleg<125willDESIGN:Ten4-910-1920-29participatedaddressexceedrecommendedallowanceoneSubjectscompletedpre-VEMPaudiometricdistortionproductotoacousticemissionsubjectivequestionnairepre-post-VEMPRESULTS:determined107109obtained114116117Similarfoundgroupsexceptsignificantlycompared0020040102additionequivalentlinearlycorrelatedrateslatenciesamplitudeseffectseitherCONCLUSIONS:highUseregardedsafershorterdurationthusreducedsmallerpresentresponsesinitiatedacousticminimizeoptimizeAir-ConductedVestibularEvokedMyogenicPotentialTestingAdolescentsYoungAdults:ThresholdsFrequencyTuningEffectsSoundExposure

Similar Articles

Cited By