joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes.

Graeme L Hickey, Pete Philipson, Andrea Jorgensen, Ruwanthi Kolamunnage-Dona
Author Information
  1. Graeme L Hickey: Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Waterhouse Building, 1-5 Brownlow Street, Liverpool, L69 3GL, UK. ORCID
  2. Pete Philipson: Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK.
  3. Andrea Jorgensen: Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Waterhouse Building, 1-5 Brownlow Street, Liverpool, L69 3GL, UK.
  4. Ruwanthi Kolamunnage-Dona: Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Waterhouse Building, 1-5 Brownlow Street, Liverpool, L69 3GL, UK. ruwanthi.kolamunnage-dona@liverpool.ac.uk.

Abstract

BACKGROUND: Joint modelling of longitudinal and time-to-event outcomes has received considerable attention over recent years. Commensurate with this has been a rise in statistical software options for fitting these models. However, these tools have generally been limited to a single longitudinal outcome. Here, we describe the classical joint model to the case of multiple longitudinal outcomes, propose a practical algorithm for fitting the models, and demonstrate how to fit the models using a new package for the statistical software platform R, joineRML.
RESULTS: A multivariate linear mixed sub-model is specified for the longitudinal outcomes, and a Cox proportional hazards regression model with time-varying covariates is specified for the event time sub-model. The association between models is captured through a zero-mean multivariate latent Gaussian process. The models are fitted using a Monte Carlo Expectation-Maximisation algorithm, and inferences are based on approximate standard errors from the empirical profile information matrix, which are contrasted to an alternative bootstrap estimation approach. We illustrate the model and software on a real data example for patients with primary biliary cirrhosis with three repeatedly measured biomarkers.
CONCLUSIONS: An open-source software package capable of fitting multivariate joint models is available. The underlying algorithm and source code makes use of several methods to increase computational speed.

Keywords

References

  1. Stat Med. 1996 Aug 15;15(15):1663-85 [PMID: 8858789]
  2. Stat Med. 2011 May 30;30(12):1366-80 [PMID: 21337596]
  3. Biometrics. 2006 Dec;62(4):1037-43 [PMID: 17156277]
  4. Biostatistics. 2000 Dec;1(4):465-80 [PMID: 12933568]
  5. Biometrics. 2004 Dec;60(4):892-9 [PMID: 15606409]
  6. BMC Med Res Methodol. 2016 Sep 07;16(1):117 [PMID: 27604810]
  7. Biometrics. 2006 Jun;62(2):432-45 [PMID: 16918907]
  8. Biostatistics. 2014 Oct;15(4):731-44 [PMID: 24771699]
  9. Biom J. 2011 Sep;53(5):750-63 [PMID: 21834127]
  10. Int J Biostat. 2018 Jan 31;14(1): [PMID: 29389664]
  11. Stat Med. 2015 Jun 30;34(14):2181-95 [PMID: 24634327]
  12. Stat Methods Med Res. 2017 Aug;26(4):1787-1801 [PMID: 26059114]
  13. Stat Med. 2014 Aug 15;33(18):3167-78 [PMID: 24676841]
  14. Health Serv Outcomes Res Methodol. 2012 Jun;12(2-3):182-199 [PMID: 22773919]
  15. J Clin Oncol. 2010 Jun 1;28(16):2796-801 [PMID: 20439643]
  16. Biostatistics. 2002 Dec;3(4):547-63 [PMID: 12933597]
  17. Transplantation. 2015 Mar;99(3):580-5 [PMID: 25136844]
  18. Biometrics. 2010 Mar;66(1):20-9 [PMID: 19459832]
  19. Biometrics. 1982 Dec;38(4):963-74 [PMID: 7168798]
  20. Lifetime Data Anal. 2002 Dec;8(4):349-60 [PMID: 12471944]
  21. Lifetime Data Anal. 2018 Jan;24(1):126-152 [PMID: 28856493]
  22. J Biom Biostat. 2014 Aug;5(4): [PMID: 25688330]
  23. Ann Appl Stat. 2010 Sep 1;4(3):1517-1532 [PMID: 21938267]
  24. Stat Med. 2016 Nov 20;35(26):4813-4823 [PMID: 27383428]
  25. Biostatistics. 2002 Dec;3(4):511-28 [PMID: 12933595]
  26. Biometrics. 2002 Dec;58(4):742-53 [PMID: 12495128]
  27. Biometrics. 1997 Mar;53(1):330-9 [PMID: 9147598]
  28. Stat Med. 2008 Dec 30;27(30):6426-38 [PMID: 18825652]
  29. Hepatology. 1994 Jul;20(1 Pt 1):126-34 [PMID: 8020881]
  30. Stat Med. 2012 Dec 20;31(29):3946-58 [PMID: 22763916]
  31. Stat Med. 2007 Dec 30;26(30):5473-85 [PMID: 18058854]
  32. Stat Med. 2002 Aug 30;21(16):2369-82 [PMID: 12210621]
  33. Biometrics. 2001 Mar;57(1):81-7 [PMID: 11252622]
  34. J Stat Softw. 2017;76: [PMID: 36568334]

Grants

  1. MR/M013227/1/Medical Research Council

MeSH Term

Algorithms
Biomarkers
Biometry
Humans
Linear Models
Longitudinal Studies
Monte Carlo Method
Multivariate Analysis
Outcome Assessment, Health Care
Reproducibility of Results
Software

Chemicals

Biomarkers

Word Cloud

Created with Highcharts 10.0.0modelslongitudinalsoftwareoutcomesmodelmultivariatedatafittingjointalgorithmpackageJointmodellingtime-to-eventstatisticalusingsub-modelspecifiedBACKGROUND:receivedconsiderableattentionrecentyearsCommensurateriseoptionsHowevertoolsgenerallylimitedsingleoutcomedescribeclassicalcasemultipleproposepracticaldemonstratefitnewplatformRjoineRMLRESULTS:linearmixedCoxproportionalhazardsregressiontime-varyingcovariateseventtimeassociationcapturedzero-meanlatentGaussianprocessfittedMonteCarloExpectation-MaximisationinferencesbasedapproximatestandarderrorsempiricalprofileinformationmatrixcontrastedalternativebootstrapestimationapproachillustraterealexamplepatientsprimarybiliarycirrhosisthreerepeatedlymeasuredbiomarkersCONCLUSIONS:open-sourcecapableavailableunderlyingsourcecodemakesuseseveralmethodsincreasecomputationalspeedjoineRML:LongitudinalMultivariateSoftwareTime-to-event

Similar Articles

Cited By