Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints.

Ayenachew Bezawork-Geleta, He Wen, LanFeng Dong, Bing Yan, Jelena Vider, Stepana Boukalova, Linda Krobova, Katerina Vanova, Renata Zobalova, Margarita Sobol, Pavel Hozak, Silvia Magalhaes Novais, Veronika Caisova, Pavel Abaffy, Ravindra Naraine, Ying Pang, Thiri Zaw, Ping Zhang, Radek Sindelka, Mikael Kubista, Steven Zuryn, Mark P Molloy, Michael V Berridge, Karel Pacak, Jakub Rohlena, Sunghyouk Park, Jiri Neuzil
Author Information
  1. Ayenachew Bezawork-Geleta: School of Medical Sciences, Griffith University, Southport, 4222, Qld, Australia. a.bezawork-geleta@griffith.edu.au.
  2. He Wen: Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518060, China.
  3. LanFeng Dong: School of Medical Sciences, Griffith University, Southport, 4222, Qld, Australia.
  4. Bing Yan: School of Medical Sciences, Griffith University, Southport, 4222, Qld, Australia.
  5. Jelena Vider: School of Medical Sciences, Griffith University, Southport, 4222, Qld, Australia. ORCID
  6. Stepana Boukalova: Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 25250, Czech Republic.
  7. Linda Krobova: Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 25250, Czech Republic.
  8. Katerina Vanova: Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 25250, Czech Republic.
  9. Renata Zobalova: Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 25250, Czech Republic.
  10. Margarita Sobol: Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 14220, Czech Republic.
  11. Pavel Hozak: Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 14220, Czech Republic.
  12. Silvia Magalhaes Novais: Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 25250, Czech Republic.
  13. Veronika Caisova: Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.
  14. Pavel Abaffy: Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 25250, Czech Republic.
  15. Ravindra Naraine: Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 25250, Czech Republic.
  16. Ying Pang: Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.
  17. Thiri Zaw: Australian Proteome Analysis Facility, Macquarie University, North Ryde, 2109, NSW, Australia.
  18. Ping Zhang: School of Medical Sciences, Griffith University, Southport, 4222, Qld, Australia.
  19. Radek Sindelka: Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 25250, Czech Republic.
  20. Mikael Kubista: Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 25250, Czech Republic.
  21. Steven Zuryn: Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, 4072, Qld, Australia.
  22. Mark P Molloy: Australian Proteome Analysis Facility, Macquarie University, North Ryde, 2109, NSW, Australia.
  23. Michael V Berridge: Malaghan Institute of Medical Research, Wellington, 6242, New Zealand.
  24. Karel Pacak: Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.
  25. Jakub Rohlena: Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 25250, Czech Republic. jakub.rohlena@ibt.cas.cz.
  26. Sunghyouk Park: College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul, 08826, Korea. psh@snu.ac.kr.
  27. Jiri Neuzil: School of Medical Sciences, Griffith University, Southport, 4222, Qld, Australia. j.neuzil@griffith.edu.au.

Abstract

Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CII, serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CII leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase. In vitro experiments are further corroborated by analysis of paraganglioma tissues from patients with sporadic, SDHA and SDHB mutations. These findings suggest that CII is a core complex inside mitochondria that provides homeostatic control of cellular metabolism depending on the availability of energy.

References

  1. Nat Rev Genet. 2013 Nov;14(11):765-80 [PMID: 24105274]
  2. Nat Biotechnol. 2014 Mar;32(3):219-23 [PMID: 24727770]
  3. Nature. 2012 Nov 15;491(7424):364-73 [PMID: 23151579]
  4. J Biol Chem. 1995 Nov 3;270(44):26104-8 [PMID: 7592812]
  5. Oncotarget. 2017 Apr 25;8(17 ):28922-28938 [PMID: 28423651]
  6. Nature. 2015 Nov 19;527(7578):379-383 [PMID: 26560030]
  7. Genes Dev. 2009 Mar 1;23(5):537-48 [PMID: 19270154]
  8. Exp Cell Res. 1975 Jun;93(1):105-10 [PMID: 166847]
  9. PLoS One. 2015 May 01;10(5):e0119549 [PMID: 25932953]
  10. Bioinformatics. 2012 Dec 15;28(24):3211-7 [PMID: 23071270]
  11. Antioxid Redox Signal. 2017 Jan 10;26(2):84-103 [PMID: 27392540]
  12. Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):251-62 [PMID: 22436748]
  13. Trends Cell Biol. 2014 Aug;24(8):472-8 [PMID: 24985940]
  14. Nat Commun. 2015 Nov 02;6:8784 [PMID: 26522426]
  15. Cancer Res. 2001 Oct 15;61(20):7623-6 [PMID: 11606403]
  16. J Clin Endocrinol Metab. 2006 Mar;91(3):827-36 [PMID: 16317055]
  17. Cancer Discov. 2013 Jun;3(6):648-57 [PMID: 23550148]
  18. Clin Cancer Res. 2016 Oct 15;22(20):5001-5011 [PMID: 27742786]
  19. Science. 2009 Aug 28;325(5944):1139-42 [PMID: 19628817]
  20. Mol Cell Proteomics. 2016 Jul;15(7):2501-14 [PMID: 27161445]
  21. Mol Cell. 2007 May 11;26(3):393-402 [PMID: 17499045]
  22. Cancer Discov. 2017 Apr;7(4):380-390 [PMID: 28255082]
  23. Mol Biosyst. 2013 Oct;9(10):2565-74 [PMID: 23942477]
  24. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  25. Nucleic Acids Res. 2009 Jan;37(1):1-13 [PMID: 19033363]
  26. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  27. J Biol Chem. 2013 Jan 18;288(3):1685-90 [PMID: 23223238]
  28. PLoS One. 2013 Aug 13;8(8):e71869 [PMID: 23967256]
  29. Cell. 2005 Jul 1;121(7):1043-57 [PMID: 15989954]
  30. Mol Cell. 2008 Nov 21;32(4):529-39 [PMID: 19026783]
  31. Bioinformation. 2017 Mar 31;13(3):101-103 [PMID: 28584451]
  32. Nat Cell Biol. 2015 Apr;17(4):351-9 [PMID: 25774832]
  33. Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9 [PMID: 27098042]
  34. Nucleic Acids Res. 2015 Feb 27;43(4):2466-85 [PMID: 25628363]
  35. Genes Chromosomes Cancer. 2006 Jul;45(7):629-38 [PMID: 16568452]
  36. Cancer Cell. 2017 Feb 13;31(2):181-193 [PMID: 28162975]
  37. J Hepatol. 2010 Feb;52(2):228-33 [PMID: 20036026]
  38. Science. 2013 Jun 28;340(6140):1567-70 [PMID: 23812712]
  39. Cell Metab. 2015 Jan 6;21(1):11-2 [PMID: 25565201]
  40. Trends Biochem Sci. 2017 Apr;42(4):312-325 [PMID: 28185716]
  41. BMC Cancer. 2015 May 13;15:401 [PMID: 25967547]
  42. Oncogene. 2006 Aug 7;25(34):4675-82 [PMID: 16892081]
  43. Cancer Cell. 2005 Jan;7(1):77-85 [PMID: 15652751]
  44. Annu Rev Biochem. 2003;72:77-109 [PMID: 14527321]
  45. Cancer Cell. 2013 Jun 10;23(6):739-52 [PMID: 23707781]
  46. Endocrinology. 2014 Jan;155(1):27-32 [PMID: 24189137]
  47. Proc Natl Acad Sci U S A. 2002 May 14;99(10):6643-8 [PMID: 12011428]
  48. Nature. 2008 Mar 13;452(7184):181-6 [PMID: 18337815]
  49. J Biol Chem. 2016 Oct 7;291(41):21414-21420 [PMID: 27587393]
  50. Free Radic Biol Med. 2017 Nov;112:253-266 [PMID: 28774815]
  51. Elife. 2017 Feb 15;6: [PMID: 28195532]
  52. Cell Rep. 2016 Apr 5;15(1):197-209 [PMID: 27052170]
  53. Nat Med. 2017 Jun;23 (6):753-762 [PMID: 28436957]
  54. Biochem Med Metab Biol. 1992 Oct;48(2):122-6 [PMID: 1329873]
  55. Mod Pathol. 2015 Jun;28(6):807-21 [PMID: 25720320]
  56. Science. 2013 Dec 13;342(6164):1379-82 [PMID: 24231807]
  57. Nature. 2009 Apr 23;458(7241):1056-60 [PMID: 19262508]
  58. Cancer Discov. 2017 Apr;7(4):391-399 [PMID: 28255083]
  59. Histopathology. 2010 Feb;56(3):405-8 [PMID: 20459544]
  60. Proc Natl Acad Sci U S A. 2012 May 1;109(18):6904-9 [PMID: 22509023]
  61. Cell. 2016 Apr 21;165(3):535-50 [PMID: 27104977]
  62. Nature. 2011 Nov 20;481(7381):385-8 [PMID: 22101431]
  63. Genome Res. 2015 Nov;25(11):1610-21 [PMID: 26297486]
  64. J Biol Chem. 2003 Jan 31;278(5):3403-9 [PMID: 12438317]
  65. Mol Cell Proteomics. 2013 Mar;12 (3):575-86 [PMID: 23230277]
  66. Sci Adv. 2016 May 27;2(5):e1600200 [PMID: 27386546]
  67. Angew Chem Int Ed Engl. 2015 Apr 27;54(18):5374-7 [PMID: 25752301]
  68. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15983-7 [PMID: 12444247]
  69. PLoS Genet. 2011 Jun;7(6):e1001393 [PMID: 21695224]
  70. Antioxid Redox Signal. 2008 Aug;10(8):1313-42 [PMID: 18435594]
  71. Science. 2009 May 22;324(5930):1029-33 [PMID: 19460998]
  72. Lancet Oncol. 2009 Aug;10(8):764-71 [PMID: 19576851]
  73. FASEB J. 2014 Apr;28(4):1794-804 [PMID: 24414418]
  74. BMC Genomics. 2017 Apr 24;18(1):322 [PMID: 28438116]
  75. Methods Mol Biol. 2015;1265:195-208 [PMID: 25634277]
  76. Nat Rev Cancer. 2012 Oct;12(10):685-98 [PMID: 23001348]
  77. Mol Cell. 2014 Nov 6;56(3):414-24 [PMID: 25458842]
  78. Cell Metab. 2015 Jan 6;21(1):81-94 [PMID: 25565207]
  79. Nat Genet. 1993 Jul;4(3):289-94 [PMID: 7689389]
  80. Breast Cancer Res Treat. 2011 Jul;128(2):327-36 [PMID: 20697806]
  81. Nat Cell Biol. 2015 Oct;17(10):1317-26 [PMID: 26302408]
  82. PLoS One. 2011;6(7):e21800 [PMID: 21789182]
  83. Cell Metab. 2016 Feb 9;23 (2):292-302 [PMID: 26749241]
  84. J Mol Biol. 2006 Aug 18;361(3):462-9 [PMID: 16857210]
  85. Cell Death Dis. 2015 May 07;6:e1749 [PMID: 25950479]
  86. Genome Biol. 2014;15(12):550 [PMID: 25516281]

MeSH Term

Animals
Biosynthetic Pathways
Cell Line, Tumor
Electron Transport Complex II
Energy Metabolism
Gene Knockout Techniques
HEK293 Cells
Humans
Mice
Mice, Inbred BALB C
Mice, Nude
Mitochondria
Mutation
Paraganglioma
RNA, Small Interfering
S Phase Cell Cycle Checkpoints
Stress, Physiological
Succinate Dehydrogenase
Xenograft Model Antitumor Assays

Chemicals

RNA, Small Interfering
respiratory complex II
Electron Transport Complex II
SDHA protein, human
SDHB protein, human
Succinate Dehydrogenase

Word Cloud

Created with Highcharts 10.0.0energyCIIsynthesiscomplexIIassemblymetabolitestressutilizationcellcycleCellgrowthsurvivaldependdelicatebalanceproductionmetabolitesprovideevidencealternativemitochondrialdesignatedservescheckpointbiosynthesisbioenergeticcellssuppressingmodulatingDNAprogressionDepletionleadsimbalanceevidencedrecoverydenovopyrimidinepathwayunlockingarrestS-phasevitroexperimentscorroboratedanalysisparagangliomatissuespatientssporadicSDHASDHBmutationsfindingssuggestcoreinsidemitochondriaprovideshomeostaticcontrolcellularmetabolismdependingavailabilityAlternativerespiratoryconnectsmetaboliccheckpoints

Similar Articles

Cited By