Fixation probabilities in populations under demographic fluctuations.

Peter Czuppon, Arne Traulsen
Author Information
  1. Peter Czuppon: Department of Evolutionary Theory, Max-Planck Institute for Evolutionary Biology, Plön, Germany. czuppon@evolbio.mpg.de. ORCID
  2. Arne Traulsen: Department of Evolutionary Theory, Max-Planck Institute for Evolutionary Biology, Plön, Germany. ORCID

Abstract

We study the fixation probability of a mutant type when introduced into a resident population. We implement a stochastic competitive Lotka-Volterra model with two types and intra- and interspecific competition. The model further allows for stochastically varying population sizes. The competition coefficients are interpreted in terms of inverse payoffs emerging from an evolutionary game. Since our study focuses on the impact of the competition values, we assume the same net growth rate for both types. In this general framework, we derive a formula for the fixation probability [Formula: see text] of the mutant type under weak selection. We find that the most important parameter deciding over the invasion success of the mutant is its death rate due to competition with the resident. Furthermore, we compare our approximation to results obtained by implementing population size changes deterministically in order to explore the parameter regime of validity of our method. Finally, we put our formula in the context of classical evolutionary game theory and observe similarities and differences to the results obtained in that constant population size setting.

Keywords

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):010101 [PMID: 23410268]
  2. Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5500-4 [PMID: 20212124]
  3. J Theor Biol. 2017 May 7;420:232-240 [PMID: 28322875]
  4. Theor Popul Biol. 2018 Dec;124:93-107 [PMID: 30359662]
  5. Genetics. 2011 Aug;188(4):915-30 [PMID: 21652524]
  6. J R Soc Interface. 2008 Nov 6;5(28):1279-89 [PMID: 18664425]
  7. Phys Rev E. 2017 Oct;96(4-1):042412 [PMID: 29347472]
  8. Nat Rev Cancer. 2015 Dec;15(12):730-45 [PMID: 26597528]
  9. Nature. 2004 Apr 8;428(6983):646-50 [PMID: 15071593]
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 1):051921 [PMID: 22181458]
  11. J Math Biol. 2017 Nov;75(5):1285-1317 [PMID: 28352964]
  12. Theor Popul Biol. 2007 Dec;72(4):468-79 [PMID: 17574641]
  13. Evolution. 2001 Dec;55(12):2606-10 [PMID: 11831673]
  14. Theor Popul Biol. 2007 Aug;72(1):121-35 [PMID: 17239910]
  15. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3377-9 [PMID: 4530309]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021905 [PMID: 17025470]
  17. Theor Popul Biol. 2018 May;121:72-84 [PMID: 29408219]
  18. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9064-9 [PMID: 26150518]
  19. J Math Biol. 2007 May;54(5):721-44 [PMID: 17252282]
  20. Genetics. 2011 Aug;188(4):907-13 [PMID: 21527780]
  21. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022718 [PMID: 26382443]
  22. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041901 [PMID: 22680492]
  23. Phys Rev E. 2017 Aug;96(2-1):022416 [PMID: 28950630]
  24. Elife. 2017 Feb 15;6: [PMID: 28198700]
  25. Genetics. 1997 Jun;146(2):723-33 [PMID: 9178020]
  26. Theor Popul Biol. 2006 Jun;69(4):419-41 [PMID: 16504230]
  27. Heredity (Edinb). 1967 May;22(2):307-10 [PMID: 5235106]
  28. Bull Math Biol. 2007 May;69(4):1377-99 [PMID: 17318676]
  29. Proc Biol Sci. 2009 Apr 7;276(1660):1379-84 [PMID: 19141423]
  30. Phys Rev Lett. 2010 Oct 22;105(17):178101 [PMID: 21231082]
  31. Genetics. 2010 Aug;185(4):1345-54 [PMID: 20457879]
  32. Phys Rev Lett. 2015 Jan 23;114(3):038101 [PMID: 25659024]
  33. Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):E4745-54 [PMID: 27450085]

MeSH Term

Animals
Biological Evolution
Computer Simulation
Game Theory
Genetics, Population
Humans
Logistic Models
Mathematical Concepts
Models, Biological
Mutation
Population Density
Population Dynamics
Probability
Selection, Genetic
Stochastic Processes

Word Cloud

Created with Highcharts 10.0.0populationcompetitionprobabilitymutantstudyfixationtyperesidentmodeltypesevolutionarygamerateformulaselectionparameterresultsobtainedsizetheoryFixationintroducedimplementstochasticcompetitiveLotka-Volterratwointra-interspecificallowsstochasticallyvaryingsizescoefficientsinterpretedtermsinversepayoffsemergingSincefocusesimpactvaluesassumenetgrowthgeneralframeworkderive[Formula:seetext]weakfindimportantdecidinginvasionsuccessdeathdueFurthermorecompareapproximationimplementingchangesdeterministicallyorderexploreregimevaliditymethodFinallyputcontextclassicalobservesimilaritiesdifferencesconstantsettingprobabilitiespopulationsdemographicfluctuationsDemographicstochasticityDiffusionEvolutionarygamesWeak

Similar Articles

Cited By