Changes of cationic transport in AtCAX5 transformant yeast by electromagnetic field environments.

Munmyong Choe, Won Choe, Songchol Cha, Imshik Lee
Author Information
  1. Munmyong Choe: R & D Center, Pyongyang University of Science & Technology, Pyongyang, Democratic People's Republic of Korea.
  2. Won Choe: R & D Center, Pyongyang University of Science & Technology, Pyongyang, Democratic People's Republic of Korea.
  3. Songchol Cha: R & D Center, Pyongyang University of Science & Technology, Pyongyang, Democratic People's Republic of Korea.
  4. Imshik Lee: Institute of Physics, Nankai University, Weijin Rd., Tianjin, 300071, China. ilee@nankai.edu.cn. ORCID

Abstract

The electromagnetic field (EMF) is newly considered as an exogenous environmental stimulus that is closely related to ion transportation on the cellular membrane, maintaining the internal ionic homeostasis. Cation transports of Ca and other metal ions, Cd, Zn, and Mnwere studied in terms of the external Ca stress, [Ca], and exposure to the physical EMF. A specific yeast strain K667 was used for controlling CAX5 (cation/H exchanger) expression. Culture samples were exposed to 60 Hz, 0.1 mT sinusoidal or square magnetics waves, and intracellular cations of each sample were measured and analyzed. AtCAX5 transformant yeast grew normally under the metallic stress. However, the growth of the control group was significantly inhibited under the same cation concentration; 60 Hz and 0.1 mT magnetic field enhanced intracellular cation concentrations significantly as exposure time increased both in the AtCAX5 transformed yeast and in the control group. However, the AtCAX5-transformed yeast showed higher concentration of the intracellular cations than the control group under the same exposure EMF. AtCAX5-transformed yeasts displayed an increment in [Ca], [K], [Na], and [Zn] concentration under the presence of both sinusoidal and square-waved EMF stresses compared to the control group, which shows that AtCAX5 expressed in the vacuole play an important role in maintaining the homeostasis of intracellular cations. These findings could be utilized in the cultivation of the crops which were resistant to excessive exogenous ions or in the production of biomass containing a large proportion of ions for nutritional food or in the bioremediation process in metal-polluted environments.

Keywords

References

  1. J Basic Microbiol. 2009 Feb;49(1):73-81 [PMID: 18798174]
  2. Front Microbiol. 2016 Aug 31;7:1378 [PMID: 27630630]
  3. Yeast. 2015 Jan;32(1):227-37 [PMID: 25284221]
  4. J Mol Biol. 2001 Jan 19;305(3):567-80 [PMID: 11152613]
  5. J Biol Chem. 1993 May 25;268(15):11296-303 [PMID: 8496184]
  6. FASEB J. 1998 Apr;12(6):395-420 [PMID: 9535213]
  7. Biochem Biophys Res Commun. 2002 Oct 18;298(1):95-102 [PMID: 12379225]
  8. Bioelectromagnetics. 2008 May;29(4):302-11 [PMID: 18175330]
  9. FEBS Lett. 1994 Jul 25;349(1):1-6 [PMID: 8045284]
  10. Front Plant Sci. 2012 Jan 13;3:1 [PMID: 22645563]
  11. Yeast. 1995 Apr 15;11(4):355-60 [PMID: 7785336]
  12. Bioelectrochemistry. 2007 Jan;70(1):115-21 [PMID: 16713383]
  13. Bioelectromagnetics. 1986;7(3):307-14 [PMID: 3753533]
  14. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  15. Biotechnol Prog. 2007 Sep-Oct;23(5):1091-4 [PMID: 17663568]
  16. Nat Rev Mol Cell Biol. 2009 May;10(5):344-52 [PMID: 19339978]
  17. Bioelectromagnetics. 2002 Dec;23(8):557-67 [PMID: 12395410]
  18. Plant Biol (Stuttg). 2011 Jul;13(4):561-9 [PMID: 21668596]
  19. Mol Cell Biol. 1999 May;19(5):3328-37 [PMID: 10207057]
  20. Bioelectromagnetics. 1996;17(4):303-11 [PMID: 8891189]
  21. J Biol Chem. 2010 Oct 29;285(44):33914-22 [PMID: 20709757]
  22. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  23. Mol Cell Biol. 1996 May;16(5):2226-37 [PMID: 8628289]
  24. Cell Calcium. 2011 Aug;50(2):139-46 [PMID: 21310481]
  25. Cell Calcium. 2004 Apr;35(4):307-15 [PMID: 15036948]
  26. Bioelectromagnetics. 1995;16(1):41-7 [PMID: 7748202]
  27. FASEB J. 1999 Jan;13(1):95-102 [PMID: 9872934]
  28. Adv Physiol Educ. 2004 Dec;28(1-4):143-54 [PMID: 15545343]
  29. Life (Basel). 2014 May 05;4(2):189-204 [PMID: 25370192]
  30. Planta. 2007 Feb;225(3):615-24 [PMID: 16955271]
  31. Plant Physiol. 2001 Aug;126(4):1646-67 [PMID: 11500563]
  32. FASEB J. 1992 Oct;6(13):3177-85 [PMID: 1397839]
  33. Physiol Plant. 2011 May;142(1):26-34 [PMID: 21288249]
  34. BMC Plant Biol. 2009 Apr 30;9:47 [PMID: 19405943]
  35. J Biosci Bioeng. 2003;95(4):401-4 [PMID: 16233427]

MeSH Term

Arabidopsis
Arabidopsis Proteins
Calcium
Cation Transport Proteins
Cations
Electromagnetic Fields
Potassium
Saccharomyces cerevisiae
Sodium
Transformation, Genetic
Zinc

Chemicals

Arabidopsis Proteins
Cation Transport Proteins
Cations
Sodium
Zinc
Potassium
Calcium

Word Cloud

Created with Highcharts 10.0.0yeastAtCAX5fieldEMFintracellularcontrolgroupelectromagneticionsexposurecationstransformantconcentrationexogenoustransportationmaintaininghomeostasisCationCastress[Ca]K66760 Hz0sinusoidalHoweversignificantlycationAtCAX5-transformedenvironmentsnewlyconsideredenvironmentalstimuluscloselyrelatedioncellularmembraneinternalionictransportsmetalCdZnMnwerestudiedtermsexternalphysicalspecificstrainusedcontrollingCAX5cation/HexchangerexpressionCulturesamplesexposed1 mTsquaremagneticswavessamplemeasuredanalyzedgrewnormallymetallicgrowthinhibited1mTmagneticenhancedconcentrationstimeincreasedtransformedshowedhigheryeastsdisplayedincrement[K][Na][Zn]presencesquare-wavedstressescomparedshowsexpressedvacuoleplayimportantrolefindingsutilizedcultivationcropsresistantexcessiveproductionbiomasscontaininglargeproportionnutritionalfoodbioremediationprocessmetal-pollutedChangescationictransportExtremelylowfrequencyELF-EMFSaccharomycescerevisiae

Similar Articles

Cited By