Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster.

Melanie Morris, Ariel Shaw, Madison Lambert, Haley Halperin Perry, Eve Lowenstein, David Valenzuela, Norma Andrea Velazquez-Ulloa
Author Information
  1. Melanie Morris: School of Medicine, University of Washington, Seattle, USA.
  2. Ariel Shaw: Biochemistry, Cell and Molecular Biology Program, Lewis & Clark College, Portland, USA.
  3. Madison Lambert: Biology Department, Lewis & Clark College, Portland, USA.
  4. Haley Halperin Perry: Biology Department, Lewis & Clark College, Portland, USA.
  5. Eve Lowenstein: Biology Department, Lewis & Clark College, Portland, USA.
  6. David Valenzuela: Madison High School, Portland Public Schools, Portland, USA.
  7. Norma Andrea Velazquez-Ulloa: Biology Department, Lewis & Clark College, Portland, USA. nvelazquezulloa@lclark.edu. ORCID

Abstract

BACKGROUND: Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages.
RESULTS: We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size.
CONCLUSIONS: We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila research will allow elucidation of the mechanisms underlying the effects of nicotine exposure during development.

Keywords

References

  1. Neuropsychopharmacology. 2015 Jan;40(1):61-87 [PMID: 24938210]
  2. J Chem Neuroanat. 2016 Apr;73:21-32 [PMID: 26718607]
  3. Dev Psychol. 2011 Jan;47(1):153-6 [PMID: 21038943]
  4. J Biol Chem. 2005 Jun 3;280(22):20987-94 [PMID: 15781463]
  5. Matern Child Health J. 2017 Aug;21(8):1655-1661 [PMID: 28084577]
  6. Behav Brain Res. 2011 Aug 10;221(2):367-78 [PMID: 20060019]
  7. Nucleic Acids Res. 2002 Jan 1;30(1):149-51 [PMID: 11752278]
  8. Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13520-5 [PMID: 16938835]
  9. J Pediatr. 2013 May;162(5):970-5 [PMID: 23211926]
  10. Brain Res Bull. 1987 May;18(5):601-11 [PMID: 3607529]
  11. PLoS One. 2015 Sep 15;10(9):e0137953 [PMID: 26372012]
  12. Cell Cycle. 2014;13(9):1400-12 [PMID: 24626186]
  13. BMJ Open. 2017 Feb 23;7(2):e012680 [PMID: 28235965]
  14. Neurotoxicol Teratol. 1999 Sep-Oct;21(5):603-9 [PMID: 10492395]
  15. PLoS Biol. 2006 Mar;4(3):e63 [PMID: 16494528]
  16. Front Cell Neurosci. 2013 Dec 19;7:260 [PMID: 24391541]
  17. Cell. 2014 Sep 25;159(1):200-214 [PMID: 25259927]
  18. J Pharmacol Exp Ther. 2002 Jan;300(1):124-33 [PMID: 11752107]
  19. Acta Paediatr. 2008 Oct;97(10):1331-7 [PMID: 18554275]
  20. Proc Natl Acad Sci U S A. 2005 May 31;102(22):8024-9 [PMID: 15911761]
  21. Nat Rev Neurosci. 2010 Jun;11(6):389-401 [PMID: 20485364]
  22. Curr Biol. 2000 Feb 24;10(4):187-94 [PMID: 10704411]
  23. Curr Opin Neurobiol. 2002 Dec;12(6):633-8 [PMID: 12490252]
  24. Neuron. 2015 Jun 3;86(5):1131-44 [PMID: 26050033]
  25. Bioessays. 2005 Apr;27(4):366-76 [PMID: 15770687]
  26. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6151-6 [PMID: 23530210]
  27. Neuron. 2010 Sep 23;67(6):1021-33 [PMID: 20869598]
  28. Neurosci Res. 2012 Aug;73(4):282-91 [PMID: 22626859]
  29. J Neurobiol. 2003 Jan;54(1):161-78 [PMID: 12486703]
  30. Front Neural Circuits. 2009 Jul 01;3:5 [PMID: 19597562]
  31. J Neurobiol. 2004 Aug;60(2):249-61 [PMID: 15266655]
  32. Neurotoxicol Teratol. 1998 Jul-Aug;20(4):465-73 [PMID: 9697973]
  33. Nicotine Tob Res. 2012 Apr;14(4):388-97 [PMID: 22180574]
  34. Neuron. 2006 Mar 16;49(6):833-44 [PMID: 16543132]
  35. Methods. 2014 Jun 15;68(1):15-28 [PMID: 24583113]
  36. Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12564-9 [PMID: 20538976]
  37. J Neurosci. 2011 Jan 5;31(1):78-88 [PMID: 21209192]
  38. Nature. 2012 Aug 23;488(7412):512-6 [PMID: 22810589]
  39. Neurotoxicol Teratol. 2008 Jan-Feb;30(1):1-19 [PMID: 18380035]
  40. Science. 2006 May 19;312(5776):1051-4 [PMID: 16614170]
  41. Neuron. 2009 Nov 25;64(4):522-36 [PMID: 19945394]
  42. Science. 2012 Mar 16;335(6074):1351-5 [PMID: 22422983]
  43. J Neurosci. 1999 Jul 1;19(13):5311-21 [PMID: 10377342]
  44. PLoS One. 2010 Apr 01;5(4):e9954 [PMID: 20376353]
  45. Cell. 1998 Jun 12;93(6):997-1007 [PMID: 9635429]
  46. Synapse. 2012 Nov;66(11):950-4 [PMID: 22837140]
  47. J Neurochem. 2014 Nov;131(3):369-82 [PMID: 25040725]
  48. J Comp Neurol. 1988 Feb 15;268(3):400-13 [PMID: 3129458]
  49. Nicotine Tob Res. 2017 May 1;19(5):585-590 [PMID: 28403454]
  50. Prev Med. 2015 Sep;78:92-100 [PMID: 26190366]
  51. Hum Genet. 2012 Jun;131(6):959-75 [PMID: 22350798]
  52. Psychopharmacology (Berl). 2017 Jun;234(12 ):1853-1869 [PMID: 28332006]
  53. Invert Neurosci. 2007 Mar;7(1):67-73 [PMID: 17216517]
  54. J Pediatr Biochem. 2010;1(2):125-141 [PMID: 24904708]
  55. PLoS One. 2009 Jun 12;4(6):e5897 [PMID: 19521527]
  56. Microsc Res Tech. 1999 Apr 15;45(2):65-79 [PMID: 10332725]
  57. Biochim Biophys Acta. 2016 Apr;1862(4):518-525 [PMID: 26769358]
  58. Brain Struct Funct. 2016 May;221(4):1939-53 [PMID: 25716298]
  59. PLoS One. 2012;7(12):e52521 [PMID: 23300696]
  60. J Pharmacol Exp Ther. 1989 Feb;248(2):786-92 [PMID: 2918480]
  61. Nat Neurosci. 2012 Nov;15(11):1516-23 [PMID: 23064381]
  62. Genes Brain Behav. 2016 Jan;15(1):89-107 [PMID: 26351737]
  63. Neuropsychopharmacology. 2007 Jul;32(7):1462-76 [PMID: 17164817]
  64. PLoS One. 2015 Aug 07;10 (8):e0135186 [PMID: 26252206]
  65. Cell. 2006 Oct 6;127(1):199-211 [PMID: 17018286]
  66. Pharmacol Biochem Behav. 1994 Feb;47(2):331-7 [PMID: 8146225]
  67. Genome Res. 2001 Jun;11(6):1114-25 [PMID: 11381037]
  68. Neuropsychopharmacology. 2011 Apr;36(5):1114-25 [PMID: 21289608]
  69. J Pharmacol Exp Ther. 1988 Mar;244(3):940-4 [PMID: 3252040]
  70. Nature. 2008 Nov 13;456(7219):195-201 [PMID: 19005547]
  71. Pharmacol Ther. 2009 May;122(2):125-39 [PMID: 19268688]
  72. Psychopharmacology (Berl). 2013 Dec;230(3):451-63 [PMID: 23793357]
  73. PLoS One. 2015 Jul 29;10(7):e0133956 [PMID: 26222315]
  74. Toxicol Appl Pharmacol. 2004 Jul 15;198(2):132-51 [PMID: 15236950]
  75. BMC Neurosci. 2012 Jun 22;13:73 [PMID: 22727315]
  76. J Neurosci. 2011 Jan 19;31(3):1139-48 [PMID: 21248138]
  77. J Neurosci. 2012 Jul 4;32(27):9410-8 [PMID: 22764249]
  78. J Neurochem. 2013 Apr;125(2):281-90 [PMID: 23331098]
  79. Nat Rev Neurosci. 2012 Jan 18;13(2):94-106 [PMID: 22251956]
  80. Curr Opin Neurol. 2009 Apr;22(2):121-5 [PMID: 19532034]
  81. PLoS One. 2017 May 12;12 (5):e0177710 [PMID: 28498868]
  82. Dis Model Mech. 2011 May;4(3):335-46 [PMID: 21303840]
  83. Science. 2011 Jun 24;332(6037):1571-6 [PMID: 21700877]

Grants

  1. 2014368:JAT:02/26/15/M.J. Murdock Charitable Trust
  2. 2014267:MNL:2/26/2015/M.J. Murdock Charitable Trust

MeSH Term

Animals
Brain
Dopamine
Drosophila Proteins
Drosophila melanogaster
Larva
Neurons
Nicotine
Organ Size
Receptors, Nicotinic
Time Factors
Tyrosine 3-Monooxygenase

Chemicals

Drosophila Proteins
Receptors, Nicotinic
Nicotine
Tyrosine 3-Monooxygenase
Dopamine

Word Cloud

Created with Highcharts 10.0.0nicotinebrainexposuredopaminergicsystemDrosophilaeffectssizemelanogasterdevelopmentaladultchangesmolecularstudyaffectsneuronstyrosinehydroxylasePrenatalshownnervousmammalsgeneticmechanismsmodelunderlyingeggareafluorescencenumberlarvaldecreaseDα7involvedBACKGROUND:Pregnantwomenmayexposedsmokeusetobaccoproductsreplacementtherapyviae-cigarettesdeleteriousincludingwellunderstoodcontributefasteridentificationgenespathwayspurposedeterminefocusingtwostagesRESULTS:rearedfliescontrolfood3rdinstarlarvaedeterminedeffectivenesstreatmentusedimmunohistochemistryvisualizewholeusingmarkermeasuredcountedclustersdetectedincreasehemispherecentralbrainsPPM3clustertestedinvolvementonenicotinicacetylcholinereceptorsubunitsfoundeclosionpreviouslydescribedCONCLUSIONS:concludealsoestablishesorganismtoolsavailableresearchwillallowelucidationdevelopmentDevelopmentalBrainDevelopmentDopamineNicotine

Similar Articles

Cited By