A Tutorial in Bayesian Potential Outcomes Mediation Analysis.

Milica Miočević, Oscar Gonzalez, Matthew J Valente, David P MacKinnon
Author Information
  1. Milica Miočević: Department of Methodology and Statistics, Utrecht University.
  2. Oscar Gonzalez: Department of Psychology, Arizona State University.
  3. Matthew J Valente: Department of Psychology, Arizona State University.
  4. David P MacKinnon: Department of Psychology, Arizona State University.

Abstract

Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.

Keywords

References

  1. Eval Rev. 1999 Aug;23(4):418-44 [PMID: 10558394]
  2. Psychol Methods. 2002 Mar;7(1):83-104 [PMID: 11928892]
  3. Psychol Methods. 2002 Dec;7(4):422-45 [PMID: 12530702]
  4. Epidemiology. 1992 Mar;3(2):143-55 [PMID: 1576220]
  5. J Pers Soc Psychol. 2005 Dec;89(6):852-63 [PMID: 16393020]
  6. Psychol Methods. 2007 Mar;12(1):1-22 [PMID: 17402809]
  7. Psychol Methods. 2007 Mar;12(1):23-44 [PMID: 17402810]
  8. Clin Trials. 2007;4(5):499-513 [PMID: 17942466]
  9. Behav Res Methods. 2007 Aug;39(3):384-9 [PMID: 17958149]
  10. Health Psychol. 1991;10(3):164-72 [PMID: 1879388]
  11. Prev Sci. 2009 Jun;10(2):87-99 [PMID: 19003535]
  12. Behav Res Methods. 2009 May;41(2):425-38 [PMID: 19363183]
  13. Epidemiology. 2009 Nov;20(6):851-60 [PMID: 19806060]
  14. Psychol Methods. 2009 Dec;14(4):301-22 [PMID: 19968395]
  15. Biostatistics. 2010 Apr;11(2):353-72 [PMID: 20101045]
  16. Multivariate Behav Res. 1995 Jan 1;30(1):41 [PMID: 20157641]
  17. Multivariate Behav Res. 2004 Jan 1;39(1):99 [PMID: 20157642]
  18. Epidemiology. 2010 Jul;21(4):540-51 [PMID: 20479643]
  19. Psychol Methods. 2010 Sep;15(3):209-33 [PMID: 20822249]
  20. Psychol Methods. 2010 Dec;15(4):309-34 [PMID: 20954780]
  21. Biometrics. 2011 Sep;67(3):1028-38 [PMID: 21306353]
  22. Health Serv Res. 2011 Apr;46(2):421-9 [PMID: 21371028]
  23. Behav Res Methods. 2011 Sep;43(3):692-700 [PMID: 21487904]
  24. Multivariate Behav Res. 2011 May;46(3):425-452 [PMID: 22399826]
  25. Psychol Methods. 2012 Dec;17(4):642-64 [PMID: 22905648]
  26. Biometrics. 2012 Dec;68(4):1028-36 [PMID: 23005030]
  27. Psychol Methods. 2013 Jun;18(2):137-50 [PMID: 23379553]
  28. Stat Med. 2013 Oct 30;32(24):4211-28 [PMID: 23650048]
  29. Multivariate Behav Res. 2013 May 1;48(3):340-369 [PMID: 24039298]
  30. Child Dev. 2014 May-Jun;85(3):842-860 [PMID: 24116396]
  31. Dev Psychol. 2014 Apr;50(4):1197-207 [PMID: 24219316]
  32. Am J Epidemiol. 2014 Feb 15;179(4):513-8 [PMID: 24264291]
  33. Epidemiology. 2014 Mar;25(2):282-91 [PMID: 24487211]
  34. Eval Rev. 2013 Oct;37(5):405-31 [PMID: 24681690]
  35. AIDS Behav. 2015 Jan;19(1):34-40 [PMID: 24874725]
  36. Psychol Methods. 2014 Dec;19(4):459-81 [PMID: 24885338]
  37. Epidemiology. 2014 Sep;25(5):749-61 [PMID: 25000145]
  38. Pers Soc Psychol Rev. 2015 Feb;19(1):30-43 [PMID: 25063043]
  39. Biometrics. 2015 Mar;71(1):1-14 [PMID: 25351114]
  40. Epidemiol Methods. 2014 Jan;2(1):95-115 [PMID: 25580377]
  41. J Health Psychol. 2015 Jun;20(6):721-9 [PMID: 26032789]
  42. Stat Methods Med Res. 2018 Jan;27(1):3-19 [PMID: 26596350]
  43. Multivariate Behav Res. 2015;50(3):316-33 [PMID: 26610032]
  44. Multivariate Behav Res. 2007 Jan-Mar;42(1):185-227 [PMID: 26821081]
  45. Struct Equ Modeling. 2016;23(3):368-383 [PMID: 27158217]
  46. Stat Med. 2016 Sep 30;35(22):4008-20 [PMID: 27229743]
  47. Educ Psychol Meas. 2016 Dec;76(6):889-911 [PMID: 27833175]
  48. J Am Stat Assoc. 2016;111(514):510-525 [PMID: 28008210]
  49. Psychol Methods. 2018 Dec;23(4):654-671 [PMID: 29595294]
  50. Struct Equ Modeling. 2017;24(5):666-683 [PMID: 29662296]
  51. J Pers Soc Psychol. 1986 Dec;51(6):1173-82 [PMID: 3806354]

Grants

  1. F31 DA043317/NIDA NIH HHS
  2. R01 DA009757/NIDA NIH HHS
  3. R37 DA009757/NIDA NIH HHS

Word Cloud

Created with Highcharts 10.0.0mediationanalysisBayesiancausalmethodseffectsusedvariablesrelationindependentprobabilitydatagivenhypothesispotentialoutcomesframeworkindirectprobabilisticinterpretationsinferenceStatisticalinvestigateintermediatedependentCausalinterpretationanalyseschallengingrandomizationsubjectslevelsvariablerulepossibilityunmeasuredconfoundersmediatoroutcomeFurthermorecommonlyfrequentistcomputenullcertainassumptionsapplyingallowscomputationstatisticalgivestutorialcombinesdirectStepsshownapplicationempiricalexampleTutorialPotentialOutcomesMediationAnalysis

Similar Articles

Cited By