Characterization of the Populus Rab family genes and the function of PtRabE1b in salt tolerance.

Jin Zhang, Yu Li, Bobin Liu, Lijuan Wang, Li Zhang, Jianjun Hu, Jun Chen, Huanquan Zheng, Mengzhu Lu
Author Information
  1. Jin Zhang: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. ORCID
  2. Yu Li: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
  3. Bobin Liu: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
  4. Lijuan Wang: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. wlj307@caf.ac.cn.
  5. Li Zhang: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
  6. Jianjun Hu: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
  7. Jun Chen: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
  8. Huanquan Zheng: Developmental Biology Research Initiatives, Biology Department, McGill University, Montreal, Quebec, Canada.
  9. Mengzhu Lu: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. lumz@caf.ac.cn.

Abstract

BACKGROUND: Rab proteins form the largest family of the Ras superfamily of small GTP-binding proteins and regulate intracellular trafficking pathways. However, the function of the Rab proteins in woody species is still an open question.
RESULTS: Here, a total of 67 PtRabs were identified in Populus trichocarpa and categorized into eight subfamilies (RabA-RabH). Based on their chromosomal distribution and duplication blocks in the Populus genome, a total of 27 PtRab paralogous pairs were identified and all of them were generated by whole-genome duplication events. Combined the expression correlation and duplication date, the PtRab paralogous pairs that still keeping highly similar expression patterns were generated around the latest large-scale duplication (~ 13 MYA). The cis-elements and co-expression network of unique expanded PtRabs suggest their potential roles in poplar development and environmental responses. Subcellular localization of PtRabs from each subfamily indicates each subfamily shows a localization pattern similar to what is revealed in Arabidopsis but RabC shows a localization different from their counterparts. Furthermore, we characterized PtRabE1b by overexpressing its constitutively active mutant PtRabE1b(Q74L) in poplar and found that PtRabE1b(Q74L) enhanced the salt tolerance.
CONCLUSIONS: These findings provide new insights into the functional divergence of PtRabs and resources for genetic engineering resistant breeding in tree species.

Keywords

References

  1. Nat Rev Mol Cell Biol. 2001 Feb;2(2):107-17 [PMID: 11252952]
  2. Planta. 2013 Jan;237(1):161-72 [PMID: 23001196]
  3. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2572-7 [PMID: 24550285]
  4. Plant Cell. 2009 Apr;21(4):1141-54 [PMID: 19376932]
  5. Int Rev Cell Mol Biol. 2009;274:183-233 [PMID: 19349038]
  6. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6187-92 [PMID: 9600939]
  7. Plant Physiol. 2009 Apr;149(4):1824-37 [PMID: 19233904]
  8. Plant Cell. 2000 Nov;12(11):2201-18 [PMID: 11090219]
  9. Bioinformatics. 2011 Feb 1;27(3):431-2 [PMID: 21149340]
  10. J Biol Chem. 2002 Mar 15;277(11):9183-8 [PMID: 11756458]
  11. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  12. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  13. Plant J. 2013 Jan;73(2):240-9 [PMID: 22974509]
  14. Bioinformatics. 2015 Apr 15;31(8):1296-7 [PMID: 25504850]
  15. J Cell Biol. 2006 Jun 19;173(6):917-26 [PMID: 16769818]
  16. Curr Opin Plant Biol. 2002 Dec;5(6):518-28 [PMID: 12393015]
  17. J Exp Bot. 2008;59(15):4061-74 [PMID: 18945942]
  18. BMC Genomics. 2014 Apr 21;15:296 [PMID: 24750781]
  19. Trends Biochem Sci. 1995 Jan;20(1):10-2 [PMID: 7878730]
  20. Nucleic Acids Res. 2002 Jan 1;30(1):325-7 [PMID: 11752327]
  21. Trends Genet. 2002 Sep;18(9):486 [PMID: 12175810]
  22. Nat Cell Biol. 2011 Jun 12;13(7):853-9 [PMID: 21666683]
  23. New Phytol. 2010 Nov;188(3):762-73 [PMID: 20796215]
  24. Trends Plant Sci. 2010 Dec;15(12):664-74 [PMID: 20846898]
  25. BMC Genomics. 2013 Aug 05;14:532 [PMID: 23915275]
  26. Annu Rev Cell Dev Biol. 2009;25:113-32 [PMID: 19575639]
  27. Plant Physiol. 2013 Apr;161(4):1722-36 [PMID: 23404918]
  28. J Biol Chem. 2008 Oct 3;283(40):26996-7006 [PMID: 18693252]
  29. Plant Physiol. 2003 Mar;131(3):1191-208 [PMID: 12644670]
  30. Curr Opin Plant Biol. 2001 Oct;4(5):401-6 [PMID: 11597497]
  31. Nat Chem Biol. 2010 Jul;6(7):534-40 [PMID: 20512138]
  32. Science. 2006 Sep 15;313(5793):1596-604 [PMID: 16973872]
  33. Plant Cell Rep. 2008 Jan;27(1):105-15 [PMID: 17899098]
  34. Plant Cell Environ. 2011 Dec;34(12 ):2212-24 [PMID: 21895694]
  35. Mol Biol Rep. 2011 Mar;38(3):1669-74 [PMID: 20862551]
  36. Plant Cell. 2005 Jul;17 (7):2020-36 [PMID: 15972698]
  37. Cell. 2004 Jan 23;116(2):153-66 [PMID: 14744428]
  38. Nucleic Acids Res. 2017 Jul 3;45(W1):W122-W129 [PMID: 28472432]
  39. Science. 2000 Nov 10;290(5494):1151-5 [PMID: 11073452]
  40. J Cell Sci. 2005 Jun 15;118(Pt 12):2601-11 [PMID: 15914536]
  41. Plant Physiol. 2014 May;165(1):319-34 [PMID: 24676858]
  42. J Mol Biol. 2001 Nov 2;313(4):889-901 [PMID: 11697911]
  43. Plant Biotechnol J. 2018 Jul;16(7):1311-1321 [PMID: 29230937]
  44. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5675-9 [PMID: 8650150]
  45. Nat Struct Mol Biol. 2008 Jul;15(7):658-64 [PMID: 18618939]
  46. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8836-40 [PMID: 10922043]
  47. Curr Opin Plant Biol. 2014 Dec;22:116-121 [PMID: 25460076]
  48. Plant Cell. 2002 Apr;14(4):945-62 [PMID: 11971147]
  49. Bioinformatics. 2007 Nov 1;23(21):2947-8 [PMID: 17846036]
  50. Plant J. 2010 Mar;61(6):1107-21 [PMID: 20409281]

Grants

  1. 31270699/National Natural Science Foundation of China

MeSH Term

Chromosomes, Plant
Conserved Sequence
Genes, Plant
Phylogeny
Plant Proteins
Populus
Promoter Regions, Genetic
Salt Tolerance
Salt-Tolerant Plants
Transcriptome
rab GTP-Binding Proteins

Chemicals

Plant Proteins
rab GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0RabPtRabsPopulusduplicationlocalizationPtRabE1bproteinstolerancefamilyfunctionspeciesstilltotalidentifiedPtRabparalogouspairsgeneratedexpressionsimilarnetworkpoplarSubcellularsubfamilyshowsQ74LsaltBACKGROUND:formlargestRassuperfamilysmallGTP-bindingregulateintracellulartraffickingpathwaysHoweverwoodyopenquestionRESULTS:67trichocarpacategorizedeightsubfamiliesRabA-RabHBasedchromosomaldistributionblocksgenome27whole-genomeeventsCombinedcorrelationdatekeepinghighlypatternsaroundlatestlarge-scale~ 13MYAcis-elementsco-expressionuniqueexpandedsuggestpotentialrolesdevelopmentenvironmentalresponsesindicatespatternrevealedArabidopsisRabCdifferentcounterpartsFurthermorecharacterizedoverexpressingconstitutivelyactivemutantfoundenhancedCONCLUSIONS:findingsprovidenewinsightsfunctionaldivergenceresourcesgeneticengineeringresistantbreedingtreeCharacterizationgenesCo-expressionPhylogeneticanalysisGTPaseSalt

Similar Articles

Cited By