Subjective decision threshold for accurate visual detection performance in rats.

Yuma Osako, Yoshio Sakurai, Junya Hirokawa
Author Information
  1. Yuma Osako: Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan. ORCID
  2. Yoshio Sakurai: Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan. ORCID
  3. Junya Hirokawa: Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan. jhirokaw@mail.doshisha.ac.jp. ORCID

Abstract

The dissociation between a subjective-criterion performance and forced performance in a sensory detection can provide critical insights into the neural correlates of sensory awareness. Here, we established a behavioral task for rats to test their spatial-visual cue detection ability, using a two alternative choice task with and without a third choice option where animals get rewards only in the objective absence of a visual cue. In the trials without the third option, spatial choice accuracy decreased from near perfect to near chance levels as the visual cue brightness decreased. In contrast, with the third option, the rats exhibited >90% spatial choice accuracy regardless of the cue brightness. The rats chose the third choice option less frequently when the cue was brighter, suggesting that rats have a generalized strategy to make spatial choices only when their internal detection criterion is met. Interestingly, even when the animals chose the third option, they could still significantly and correctly choose the direction of the visual stimuli if they were forced. Our data suggest that the rats' variable detection performance with identical set of stimuli is derived from stochastic processing of visual signals with a certain internal detection threshold rather than general motivational threshold.

References

  1. Front Syst Neurosci. 2017 Feb 10;11:5 [PMID: 28239342]
  2. Conscious Cogn. 2010 Dec;19(4):1045-57 [PMID: 20598906]
  3. J Neurophysiol. 2008 Dec;100(6):3343-50 [PMID: 18922944]
  4. Psychon Bull Rev. 2008 Aug;15(4):679-91 [PMID: 18792496]
  5. Brain Res Cogn Brain Res. 2002 Jun;14(1):147-52 [PMID: 12063138]
  6. Nat Neurosci. 2013 Jul;16(7):824-31 [PMID: 23799475]
  7. Nat Neurosci. 2000 Sep;3(9):940-5 [PMID: 10966626]
  8. Nat Rev Neurosci. 2002 Jan;3(1):13-21 [PMID: 11823801]
  9. Behav Processes. 2017 Feb;135:132-144 [PMID: 27939856]
  10. Nat Neurosci. 2005 Aug;8(8):1096-101 [PMID: 15995700]
  11. Conscious Cogn. 2006 Dec;15(4):700-8 [PMID: 16725347]
  12. J Neurosci. 2008 Oct 15;28(42):10517-30 [PMID: 18923028]
  13. Sci Rep. 2015 May 29;5:10755 [PMID: 26021856]
  14. Sci Rep. 2016 Jun 07;6:27389 [PMID: 27272438]
  15. Neuron. 2013 Apr 24;78(2):339-51 [PMID: 23541901]
  16. Physiol Rep. 2014 Jul 03;2(7): [PMID: 24994895]
  17. Nat Neurosci. 2008 Nov;11(11):1262-3 [PMID: 18849984]
  18. J Exp Psychol Anim Learn Cogn. 2017 Jan;43(1):109-118 [PMID: 28045298]
  19. Nat Rev Neurosci. 2003 Mar;4(3):219-29 [PMID: 12612634]
  20. Conscious Cogn. 2008 Sep;17(3):565-75 [PMID: 17572108]
  21. Neuron. 2011 Apr 28;70(2):200-27 [PMID: 21521609]
  22. Trends Cogn Sci. 2005 Aug;9(8):381-8 [PMID: 16006172]
  23. Nature. 1976 Dec 23-30;264(5588):746-8 [PMID: 1012311]
  24. PLoS One. 2011;6(9):e25283 [PMID: 21966481]
  25. Eur J Neurosci. 2002 Feb;15(4):735-43 [PMID: 11886453]
  26. Curr Biol. 2007 Mar 20;17(6):551-5 [PMID: 17346969]
  27. Curr Biol. 2012 Aug 7;22(15):1429-34 [PMID: 22748317]
  28. Hum Neurobiol. 1985;4(4):219-27 [PMID: 3836989]
  29. J Neurophysiol. 2012 Sep;108(6):1781-92 [PMID: 22745461]
  30. Exp Brain Res. 2004 Dec;159(4):409-17 [PMID: 15249987]
  31. Nat Neurosci. 2007 Feb;10(2):257-61 [PMID: 17237774]
  32. Vision Res. 1979;19(3):247-9 [PMID: 442549]
  33. Anim Cogn. 2012 Mar;15(2):187-99 [PMID: 21909935]
  34. PLoS Biol. 2007 Oct;5(10):e260 [PMID: 17896866]
  35. Science. 1972 Oct 13;178(4057):178-9 [PMID: 5076909]
  36. Curr Biol. 2006 Dec 5;16(23):2332-6 [PMID: 17141615]
  37. Neuroscience. 2008 Jun 2;153(4):1402-17 [PMID: 18440715]
  38. Cereb Cortex. 2002 Jun;12(6):565-74 [PMID: 12003856]
  39. Sci Rep. 2016 Oct 12;6:34873 [PMID: 27731346]
  40. Nature. 2008 Sep 11;455(7210):227-31 [PMID: 18690210]
  41. Vision Res. 2001;41(10-11):1459-74 [PMID: 11322986]
  42. J Neurophysiol. 2012 Feb;107(3):758-65 [PMID: 22049334]
  43. Anim Cogn. 2017 Sep;20(5):891-906 [PMID: 28669115]
  44. Nature. 1995 Jan 19;373(6511):247-9 [PMID: 7816139]
  45. Perception. 1998;27(9):1025-40 [PMID: 10341933]
  46. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17178-83 [PMID: 16282374]
  47. J Vis. 2011 Aug 02;11(9): [PMID: 21813398]
  48. Psychopharmacology (Berl). 2007 Apr;191(3):507-20 [PMID: 17031711]
  49. Perception. 1974;3(3):241-55 [PMID: 4459818]
  50. Neuron. 2014 Oct 1;84(1):190-201 [PMID: 25242219]
  51. Neural Comput. 2016 Sep;28(9):1840-58 [PMID: 27391683]
  52. Front Neuroeng. 2014 Dec 11;7:43 [PMID: 25566051]
  53. Philos Trans R Soc Lond B Biol Sci. 2012 May 19;367(1594):1322-37 [PMID: 22492750]
  54. Science. 2011 Nov 11;334(6057):829-31 [PMID: 22076381]

MeSH Term

Animals
Attention
Decision Making
Male
Photic Stimulation
Psychomotor Performance
Rats
Reaction Time

Word Cloud

Created with Highcharts 10.0.0detectionratscuechoicethirdoptionvisualperformancespatialthresholdforcedsensorytaskwithoutanimalsaccuracydecreasednearbrightnesschoseinternalstimulidissociationsubjective-criterioncanprovidecriticalinsightsneuralcorrelatesawarenessestablishedbehavioraltestspatial-visualabilityusingtwoalternativegetrewardsobjectiveabsencetrialsperfectchancelevelscontrastexhibited>90%regardlesslessfrequentlybrightersuggestinggeneralizedstrategymakechoicescriterionmetInterestinglyevenstillsignificantlycorrectlychoosedirectiondatasuggestrats'variableidenticalsetderivedstochasticprocessingsignalscertainrathergeneralmotivationalSubjectivedecisionaccurate

Similar Articles

Cited By