Combined Face-Brain Morphology and Associated Neurocognitive Correlates in Fetal Alcohol Spectrum Disorders.

Michael Suttie, Jeffrey R Wozniak, Scott E Parnell, Leah Wetherill, Sarah N Mattson, Elizabeth R Sowell, Eric Kan, Edward P Riley, Kenneth L Jones, Claire Coles, Tatiana Foroud, Peter Hammond, CIFASD
Author Information
  1. Michael Suttie: Nuffield Department of Women's and Reproductive Health , University of Oxford, Oxford, United Kingdom. ORCID
  2. Jeffrey R Wozniak: Department of Psychiatry , University of Minnesota, Minneapolis, Minnesota.
  3. Scott E Parnell: Department of Cell Biology and Physiology , University of North Carolina, Chapel Hill, North Carolina.
  4. Leah Wetherill: Department of Medical and Molecular Genetics , Indiana University School of Medicine, Indianapolis, Indiana. ORCID
  5. Sarah N Mattson: Department of Psychology , San Diego State University, San Diego, California. ORCID
  6. Elizabeth R Sowell: Department of Pediatrics , University of Southern California and Children's Hospital Los Angeles, Los Angeles, California.
  7. Eric Kan: Department of Pediatrics , University of Southern California and Children's Hospital Los Angeles, Los Angeles, California.
  8. Edward P Riley: Department of Psychology , San Diego State University, San Diego, California.
  9. Kenneth L Jones: Department of Pediatrics , School of Medicine, UCSD, San Diego, California.
  10. Claire Coles: Department of Psychiatry and Behavioral Sciences , Emory University School of Medicine, Atlanta, Georgia.
  11. Tatiana Foroud: Department of Medical and Molecular Genetics , Indiana University School of Medicine, Indianapolis, Indiana.
  12. Peter Hammond: Nuffield Department of Women's and Reproductive Health , University of Oxford, Oxford, United Kingdom. ORCID

Abstract

BACKGROUND: Since the 1970s, a range of facial, neurostructural, and neurocognitive adverse effects have been shown to be associated with prenatal alcohol exposure. Typically, these effects are studied individually and not in combination. Our objective is to improve the understanding of the teratogenic effects of prenatal alcohol exposure by simultaneously considering face-brain morphology and neurocognitive measures.
METHODS: Participants were categorized as control (n = 47), fetal alcohol syndrome (FAS, n = 22), or heavily exposed (HE) prenatally, but not eligible for a FAS diagnosis (HE, n = 50). Structural brain MRI images and high-resolution 3D facial images were analyzed using dense surface models of features of the face and surface shape of the corpus callosum (CC) and caudate nucleus (CN). Asymmetry of the CN was evaluated for correlations with neurocognitive measures.
RESULTS: (i) Facial growth delineations for FAS, HE, and controls are replicated for the CN and the CC. (ii) Concordance of clinical diagnosis and face-based control-FAS discrimination improves when the latter is combined with specific brain regions. In particular, midline facial regions discriminate better when combined with a midsagittal profile of the CC. (iii) A subset of HE individuals was identified with FAS-like CN dysmorphism. The average of this HE subset was FAS-like in its facial dysmorphism. (iv) Right-left asymmetry found in the CNs of controls is not apparent for FAS, is diminished for HE, and correlates with neurocognitive measures in the combined FAS and HE population.
CONCLUSIONS: Shape analysis which combines facial regions with the CN, and with the CC, better identify those with FAS. CN asymmetry was reduced for FAS compared to controls and is strongly associated with general cognitive ability, verbal learning, and recall in those with prenatal alcohol exposure. This study further extends the brain-behavior relationships known to be vulnerable to alcohol teratogenesis.

Keywords

References

  1. PLoS One. 2016 Nov 2;11(11):e0165620 [PMID: 27806078]
  2. Eur J Hum Genet. 2007 May;15(5):535-42 [PMID: 17327876]
  3. Neurology. 2001 Jul 24;57(2):235-44 [PMID: 11468307]
  4. Eur J Hum Genet. 2012 Jan;20(1):33-40 [PMID: 21792232]
  5. Pediatr Blood Cancer. 2017 Oct;64(10): [PMID: 28423221]
  6. Mol Psychiatry. 2008 Jun;13(6):614-23 [PMID: 18317467]
  7. Brain. 2012 Oct;135(Pt 10):3101-14 [PMID: 22975390]
  8. Neurotoxicol Teratol. 2011 Mar-Apr;33(2):231-9 [PMID: 21074610]
  9. Brain Cogn. 2011 Feb;75(1):67-77 [PMID: 21067853]
  10. Am J Hum Genet. 2005 Dec;77(6):999-1010 [PMID: 16380911]
  11. Evolution. 2002 Oct;56(10):1909-20 [PMID: 12449478]
  12. J Anat. 2005 Sep;207(3):283-95 [PMID: 16185253]
  13. BMJ Open. 2017 Jan 20;7(1):e013237 [PMID: 28110285]
  14. Alcohol. 2010 Nov-Dec;44(7-8):649-57 [PMID: 20060678]
  15. Am J Public Health. 2000 Dec;90(12):1905-12 [PMID: 11111264]
  16. Hum Brain Mapp. 2014 Feb;35(2):659-72 [PMID: 23124690]
  17. Comput Methods Programs Biomed. 2010 Jun;98(3):278-84 [PMID: 19818524]
  18. Neuropsychol Rev. 2011 Jun;21(2):81-101 [PMID: 21503685]
  19. Eur J Orthod. 2006 Oct;28(5):408-15 [PMID: 16901962]
  20. Med Image Anal. 2013 Aug;17(6):671-84 [PMID: 23510558]
  21. Pediatrics. 2005 Jan;115(1):39-47 [PMID: 15629980]
  22. Pediatrics. 2016 Aug;138(2): [PMID: 27464676]
  23. Neurotoxicol Teratol. 2010 Nov-Dec;32(6):589-94 [PMID: 20609385]
  24. Neuroimage. 2013 Jan 15;65:176-93 [PMID: 23063452]
  25. Alcohol Clin Exp Res. 2012 Nov;36(11):1932-41 [PMID: 22551091]
  26. Alcohol Clin Exp Res. 2011 Aug;35(8):1404-17 [PMID: 21575012]
  27. Brain Imaging Behav. 2018 Jun;12(3):806-822 [PMID: 28656347]
  28. J Child Neurol. 1993 Oct;8(4):339-47 [PMID: 8228029]
  29. Neuroimage. 2002 Dec;17(4):1807-19 [PMID: 12498754]
  30. CMAJ. 2005 Mar 1;172(5 Suppl):S1-S21 [PMID: 15738468]
  31. Pediatrics. 2013 Mar;131(3):e779-88 [PMID: 23439907]
  32. Alcohol Clin Exp Res. 2010 Jan;34(1):98-111 [PMID: 19860813]
  33. Exp Biol Med (Maywood). 2005 Jun;230(6):357-65 [PMID: 15956765]
  34. Hum Mutat. 2012 May;33(5):817-25 [PMID: 22434506]
  35. Neuroimage. 2012 Aug 15;62(2):782-90 [PMID: 21979382]
  36. Alcohol Clin Exp Res. 2012 May;36(5):798-806 [PMID: 22150665]
  37. Cereb Cortex. 2012 May;22(5):1170-9 [PMID: 21799209]
  38. Acta Neuropsychiatr. 2015 Oct;27(5):251-69 [PMID: 25780875]
  39. Alcohol Clin Exp Res. 2007 May;31(5):868-79 [PMID: 17386071]
  40. Behav Brain Res. 2016 Sep 15;311:70-80 [PMID: 27185739]
  41. Alcohol Clin Exp Res. 2009 Oct;33(10):1671-89 [PMID: 19572986]
  42. Dev Med Child Neurol. 2001 Mar;43(3):148-54 [PMID: 11263683]
  43. Hum Brain Mapp. 2012 Apr;33(4):920-37 [PMID: 21416562]
  44. Am J Med Genet A. 2012 Jun;158A(6):1368-80 [PMID: 22581580]
  45. Eur J Hum Genet. 2013 Aug;21(8):816-23 [PMID: 23211703]
  46. Alcohol Clin Exp Res. 1995 Oct;19(5):1198-202 [PMID: 8561290]
  47. Am J Med Genet A. 2010 Nov;152A(11):2731-5 [PMID: 20949507]
  48. Alcohol Alcohol. 2001 Mar-Apr;36(2):147-59 [PMID: 11259212]
  49. PLoS One. 2012;7(8):e43067 [PMID: 22937012]
  50. Alcohol Clin Exp Res. 2017 Aug;41(8):1471-1483 [PMID: 28608920]

Grants

  1. U01 AA014834/NIAAA NIH HHS
  2. U01 AA026108/NIAAA NIH HHS
  3. U01 AA021651/NIAAA NIH HHS
  4. U01 AA014809/NIAAA NIH HHS
  5. U01 AA026102/NIAAA NIH HHS
  6. U01 AA026103/NIAAA NIH HHS
  7. U24 AA014828/NIAAA NIH HHS
  8. U01 AA017122/NIAAA NIH HHS
  9. U24 AA014811/NIAAA NIH HHS
  10. U24 AA014815/NIAAA NIH HHS

MeSH Term

Adolescent
Alcohol Drinking
Brain
Child
Face
Female
Fetal Alcohol Spectrum Disorders
Humans
Imaging, Three-Dimensional
Magnetic Resonance Imaging
Pregnancy
Prenatal Exposure Delayed Effects

Word Cloud

Created with Highcharts 10.0.0FASHECNfacialalcoholneurocognitiveCCeffectsprenatalexposuremeasuresFacialcontrolscombinedregionsassociateddiagnosisbrainimages3DsurfacebettersubsetFAS-likedysmorphismasymmetryFetalAlcoholSpectrumDisordersBACKGROUND:Since1970srangeneurostructuraladverseshownTypicallystudiedindividuallycombinationobjectiveimproveunderstandingteratogenicsimultaneouslyconsideringface-brainmorphologyMETHODS:Participantscategorizedcontroln = 47fetalsyndromen = 22heavilyexposedprenatallyeligiblen = 50StructuralMRIhigh-resolutionanalyzedusingdensemodelsfeaturesfaceshapecorpuscallosumcaudatenucleusAsymmetryevaluatedcorrelationsRESULTS:growthdelineationsreplicatediiConcordanceclinicalface-basedcontrol-FASdiscriminationimproveslatterspecificparticularmidlinediscriminatemidsagittalprofileiiiindividualsidentifiedaverageivRight-leftfoundCNsapparentdiminishedcorrelatespopulationCONCLUSIONS:Shapeanalysiscombinesidentifyreducedcomparedstronglygeneralcognitiveabilityverballearningrecallstudyextendsbrain-behaviorrelationshipsknownvulnerableteratogenesisCombinedFace-BrainMorphologyAssociatedNeurocognitiveCorrelatesAnalysisCaudateNucleusCorpusCallosumDysmorphism

Similar Articles

Cited By