A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains.

Hsuan-Lin Her, Yu-Wei Wu
Author Information
  1. Hsuan-Lin Her: School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
  2. Yu-Wei Wu: Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.

Abstract

Motivation: Antimicrobial resistance (AMR) is becoming a huge problem in both developed and developing countries, and identifying strains resistant or susceptible to certain antibiotics is essential in fighting against antibiotic-resistant pathogens. Whole-genome sequences have been collected for different microbial strains in order to identify crucial characteristics that allow certain strains to become resistant to antibiotics; however, a global inspection of the gene content responsible for AMR activities remains to be done.
Results: We propose a pan-genome-based approach to characterize antibiotic-resistant microbial strains and test this approach on the bacterial model organism Escherichia coli. By identifying core and accessory gene clusters and predicting AMR genes for the E. coli pan-genome, we not only showed that certain classes of genes are unevenly distributed between the core and accessory parts of the pan-genome but also demonstrated that only a portion of the identified AMR genes belong to the accessory genome. Application of machine learning algorithms to predict whether specific strains were resistant to antibiotic drugs yielded the best prediction accuracy for the set of AMR genes within the accessory part of the pan-genome, suggesting that these gene clusters were most crucial to AMR activities in E. coli. Selecting subsets of AMR genes for different antibiotic drugs based on a genetic algorithm (GA) achieved better prediction performances than the gene sets established in the literature, hinting that the gene sets selected by the GA may warrant further analysis in investigating more details about how E. coli fight against antibiotics.
Supplementary information: Supplementary data are available at Bioinformatics online.

References

  1. Bioinformatics. 2015 Nov 15;31(22):3691-3 [PMID: 26198102]
  2. Antimicrob Agents Chemother. 2016 Aug 22;60(9):5515-20 [PMID: 27381390]
  3. J Biol Chem. 1995 Mar 24;270(12):6856-63 [PMID: 7896833]
  4. Sci Rep. 2015 Feb 10;5:8365 [PMID: 25666585]
  5. Nucleic Acids Res. 2017 Jan 4;45(D1):D535-D542 [PMID: 27899627]
  6. Bioinformatics. 2012 Dec 1;28(23):3150-2 [PMID: 23060610]
  7. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2852-7 [PMID: 14970332]
  8. Nucleic Acids Res. 2014 Jan;42(Database issue):D581-91 [PMID: 24225323]
  9. Nucleic Acids Res. 2016 Jul 8;44(W1):W236-41 [PMID: 27131786]
  10. J Clin Microbiol. 2014 Apr;52(4):1182-91 [PMID: 24501024]
  11. J Antimicrob Chemother. 2013 Oct;68(10):2234-44 [PMID: 23722448]
  12. J Bacteriol. 2008 Oct;190(20):6881-93 [PMID: 18676672]
  13. BMJ. 2013 Mar 11;346:f1493 [PMID: 23479660]
  14. Curr Opin Genet Dev. 2005 Dec;15(6):589-94 [PMID: 16185861]
  15. BMC Bioinformatics. 2010 Mar 08;11:119 [PMID: 20211023]
  16. Nucleic Acids Res. 2018 Jan 9;46(1):e5 [PMID: 29077859]
  17. BMJ. 2012 May 15;344:e3369 [PMID: 22589509]
  18. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3574-81 [PMID: 26100894]
  19. Bioinformatics. 2014 May 1;30(9):1297-9 [PMID: 24420766]
  20. PLoS Comput Biol. 2011 Oct;7(10):e1002195 [PMID: 22039361]
  21. Curr Opin Microbiol. 2008 Oct;11(5):472-7 [PMID: 19086349]
  22. Front Microbiol. 2014 Nov 26;5:643 [PMID: 25505462]
  23. Nat Commun. 2015 Dec 21;6:10063 [PMID: 26686880]
  24. Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13950-5 [PMID: 16172379]
  25. Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573 [PMID: 27789705]
  26. J Bacteriol. 2000 Sep;182(18):5052-8 [PMID: 10960087]
  27. Genome Biol. 2016 Nov 25;17(1):238 [PMID: 27887642]
  28. Microb Ecol. 2012 Apr;63(3):651-73 [PMID: 22031452]
  29. BMC Genomics. 2018 Jan 19;19(Suppl 1):921 [PMID: 29363425]
  30. J Antimicrob Chemother. 2015 Oct;70(10):2763-9 [PMID: 26142410]
  31. Sci Rep. 2017 Sep 8;7(1):10984 [PMID: 28887527]
  32. Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93 [PMID: 26582926]

MeSH Term

Anti-Bacterial Agents
Drug Resistance, Bacterial
Escherichia coli
Genome, Bacterial
Machine Learning
Whole Genome Sequencing

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0AMRstrainsgenecoligenesaccessoryresistantcertainantibioticsactivitiesapproachEpan-genomeresistanceidentifyingantibiotic-resistantdifferentmicrobialcrucialpan-genome-basedEscherichiacoreclusterspredictingmachinelearningantibioticdrugspredictionGAsetsMotivation:AntimicrobialbecominghugeproblemdevelopeddevelopingcountriessusceptibleessentialfightingpathogensWhole-genomesequencescollectedorderidentifycharacteristicsallowbecomehoweverglobalinspectioncontentresponsibleremainsdoneResults:proposecharacterizetestbacterialmodelorganismshowedclassesunevenlydistributedpartsalsodemonstratedportionidentifiedbelonggenomeApplicationalgorithmspredictwhetherspecificyieldedbestaccuracysetwithinpartsuggestingSelectingsubsetsbasedgeneticalgorithmachievedbetterperformancesestablishedliteraturehintingselectedmaywarrantanalysisinvestigatingdetailsfightSupplementaryinformation:SupplementarydataavailableBioinformaticsonlineantimicrobial

Similar Articles

Cited By