Neuromorphic computing with multi-memristive synapses.

Irem Boybat, Manuel Le Gallo, S R Nandakumar, Timoleon Moraitis, Thomas Parnell, Tomas Tuma, Bipin Rajendran, Yusuf Leblebici, Abu Sebastian, Evangelos Eleftheriou
Author Information
  1. Irem Boybat: IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland. ibo@zurich.ibm.com. ORCID
  2. Manuel Le Gallo: IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland. ORCID
  3. S R Nandakumar: IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland. ORCID
  4. Timoleon Moraitis: IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
  5. Thomas Parnell: IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
  6. Tomas Tuma: IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
  7. Bipin Rajendran: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA. ORCID
  8. Yusuf Leblebici: Microelectronic Systems Laboratory, EPFL, Bldg ELD, Station 11, CH-1015, Lausanne, Switzerland.
  9. Abu Sebastian: IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland. ase@zurich.ibm.com. ORCID
  10. Evangelos Eleftheriou: IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.

Abstract

Neuromorphic computing has emerged as a promising avenue towards building the next generation of intelligent computing systems. It has been proposed that memristive devices, which exhibit history-dependent conductivity modulation, could efficiently represent the synaptic weights in artificial neural networks. However, precise modulation of the device conductance over a wide dynamic range, necessary to maintain high network accuracy, is proving to be challenging. To address this, we present a multi-memristive synaptic architecture with an efficient global counter-based arbitration scheme. We focus on phase change memory devices, develop a comprehensive model and demonstrate via simulations the effectiveness of the concept for both spiking and non-spiking neural networks. Moreover, we present experimental results involving over a million phase change memory devices for unsupervised learning of temporal correlations using a spiking neural network. The work presents a significant step towards the realization of large-scale and energy-efficient neuromorphic computing systems.

References

  1. Front Neurosci. 2015 Mar 02;9:51 [PMID: 25784849]
  2. Neuron. 2004 Sep 30;44(1):5-21 [PMID: 15450156]
  3. Front Neurosci. 2016 Oct 25;10:482 [PMID: 27826226]
  4. Neuron. 1997 Sep;19(3):635-51 [PMID: 9331354]
  5. Nat Commun. 2013;4:2072 [PMID: 23797631]
  6. Nat Commun. 2015 Sep 03;6:8181 [PMID: 26333363]
  7. Nature. 1991 Mar 28;350(6316):271-2 [PMID: 1848919]
  8. Nat Mater. 2017 Jan;16(1):101-108 [PMID: 27669052]
  9. Nat Nanotechnol. 2016 Aug;11(8):693-9 [PMID: 27183057]
  10. Front Neurosci. 2015 Oct 02;9:357 [PMID: 26483629]
  11. Nat Nanotechnol. 2015 Mar;10(3):191-4 [PMID: 25740127]
  12. Science. 1999 Sep 17;285(5435):1870-4 [PMID: 10489359]
  13. Nat Commun. 2017 Oct 24;8(1):1115 [PMID: 29062022]
  14. Adv Mater. 2017 Jan;29(4):null [PMID: 27874238]
  15. Nat Commun. 2014 Jul 07;5:4314 [PMID: 25000349]
  16. Front Neurosci. 2015 Apr 29;9:141 [PMID: 25972778]
  17. Nat Mater. 2017 Apr;16(4):414-418 [PMID: 28218920]
  18. Nature. 1998 Jun 25;393(6687):793-7 [PMID: 9655394]
  19. Nat Commun. 2017 Apr 03;8:14736 [PMID: 28368007]
  20. Front Neurosci. 2016 Mar 08;10:56 [PMID: 27013934]
  21. Science. 1997 Jan 10;275(5297):213-5 [PMID: 8985014]
  22. Nature. 2008 May 1;453(7191):80-3 [PMID: 18451858]
  23. Nat Mater. 2011 Jun 26;10(8):591-5 [PMID: 21706012]
  24. Front Neurosci. 2014 Jul 22;8:205 [PMID: 25100936]
  25. Nat Neurosci. 2000 Sep;3(9):919-26 [PMID: 10966623]
  26. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  27. Science. 2014 Aug 8;345(6197):668-73 [PMID: 25104385]
  28. IEEE Trans Biomed Circuits Syst. 2015 Apr;9(2):166-74 [PMID: 25879967]
  29. Front Neurosci. 2014 Dec 16;8:412 [PMID: 25565943]
  30. Front Neurosci. 2016 Jul 21;10:333 [PMID: 27493624]
  31. Nano Lett. 2012 May 9;12(5):2179-86 [PMID: 21668029]
  32. J Neurosci. 2003 May 1;23(9):3697-714 [PMID: 12736341]
  33. Nanotechnology. 2013 Sep 27;24(38):384010 [PMID: 23999381]
  34. Nature. 2015 May 7;521(7550):61-4 [PMID: 25951284]

MeSH Term

Action Potentials
Animals
Biomimetic Materials
Electric Conductivity
Electronics
Humans
Models, Neurological
Neural Networks, Computer
Synapses
Unsupervised Machine Learning

Word Cloud

Created with Highcharts 10.0.0computingdevicesneuralNeuromorphictowardssystemsmodulationsynapticnetworksnetworkpresentmulti-memristivephasechangememoryspikingemergedpromisingavenuebuildingnextgenerationintelligentproposedmemristiveexhibithistory-dependentconductivityefficientlyrepresentweightsartificialHoweverprecisedeviceconductancewidedynamicrangenecessarymaintainhighaccuracyprovingchallengingaddressarchitectureefficientglobalcounter-basedarbitrationschemefocusdevelopcomprehensivemodeldemonstrateviasimulationseffectivenessconceptnon-spikingMoreoverexperimentalresultsinvolvingmillionunsupervisedlearningtemporalcorrelationsusingworkpresentssignificantsteprealizationlarge-scaleenergy-efficientneuromorphicsynapses

Similar Articles

Cited By