A Bayesian framework for health economic evaluation in studies with missing data.

Alexina J Mason, Manuel Gomes, Richard Grieve, James R Carpenter
Author Information
  1. Alexina J Mason: Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK. ORCID
  2. Manuel Gomes: Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK.
  3. Richard Grieve: Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK.
  4. James R Carpenter: Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.

Abstract

Health economics studies with missing data are increasingly using approaches such as multiple imputation that assume that the data are "missing at random." This assumption is often questionable, as-even given the observed data-the probability that data are missing may reflect the true, unobserved outcomes, such as the patients' true health status. In these cases, methodological guidelines recommend sensitivity analyses to recognise data may be "missing not at random" (MNAR), and call for the development of practical, accessible approaches for exploring the robustness of conclusions to MNAR assumptions. Little attention has been paid to the problem that data may be MNAR in health economics in general and in cost-effectiveness analyses (CEA) in particular. In this paper, we propose a Bayesian framework for CEA where outcome or cost data are missing. Our framework includes a practical, accessible approach to sensitivity analysis that allows the analyst to draw on expert opinion. We illustrate the framework in a CEA comparing an endovascular strategy with open repair for patients with ruptured abdominal aortic aneurysm, and provide software tools to implement this approach.

Keywords

References

  1. Clin Trials. 2007;4(2):125-39 [PMID: 17456512]
  2. Health Econ. 2008 Jan;17(1):67-81 [PMID: 17533622]
  3. J Biopharm Stat. 2013;23(6):1352-71 [PMID: 24138436]
  4. Stat Med. 2014 May 20;33(11):1900-13 [PMID: 24343868]
  5. Med Decis Making. 2012 Jan-Feb;32(1):56-69 [PMID: 22009667]
  6. Med Decis Making. 2010 Mar-Apr;30(2):163-75 [PMID: 19675321]
  7. Int J Technol Assess Health Care. 2014 Oct;30(4):461-8 [PMID: 25682957]
  8. Health Econ. 2016 May;25(5):515-28 [PMID: 25740592]
  9. Value Health. 2007 May-Jun;10(3):195-203 [PMID: 17532812]
  10. Health Econ. 2005 May;14(5):487-96 [PMID: 15497198]
  11. Health Econ. 2005 Dec;14(12):1217-29 [PMID: 15945043]
  12. BMJ. 2011 Feb 07;342:d40 [PMID: 21300711]
  13. Pharmacoecon Open. 2017 Jun;1(2):79-97 [PMID: 29442336]
  14. Health Econ. 2012 Feb;21(2):187-200 [PMID: 22223561]
  15. Health Qual Life Outcomes. 2008 Aug 04;6:57 [PMID: 18680574]
  16. BMC Med Res Methodol. 2017 Feb 6;17(1):21 [PMID: 28166735]
  17. Med Decis Making. 2005 Jul-Aug;25(4):416-23 [PMID: 16061893]
  18. Med Decis Making. 2013 Nov;33(8):1051-63 [PMID: 23913915]
  19. Int J Technol Assess Health Care. 2008 Summer;24(3):350-7 [PMID: 18601804]
  20. Value Health. 2010 Aug;13(5):557-64 [PMID: 20345548]
  21. Int J Technol Assess Health Care. 2013 Jul;29(3):336-42 [PMID: 23863191]
  22. Eur Heart J. 2015 Aug 14;36(31):2061-2069 [PMID: 25855369]
  23. J Clin Epidemiol. 2010 Apr;63(4):355-69 [PMID: 19716263]
  24. Health Econ. 2001 Jun;10(4):303-15 [PMID: 11400253]
  25. Stat Med. 2011 Aug 30;30(19):2363-80 [PMID: 21748773]
  26. Health Econ. 2018 Nov;27(11):1670-1683 [PMID: 29969834]
  27. N Engl J Med. 2012 Oct 4;367(14):1355-60 [PMID: 23034025]
  28. Health Econ. 2003 May;12(5):377-92 [PMID: 12720255]
  29. Pharmacoeconomics. 2014 Dec;32(12):1157-70 [PMID: 25069632]
  30. BMJ. 2009 Jun 29;338:b2393 [PMID: 19564179]
  31. Clin Trials. 2017 Aug;14(4):357-367 [PMID: 28675302]
  32. Pharmacoeconomics. 2016 May;34(5):447-61 [PMID: 26753558]
  33. Pharmacoeconomics. 2015 Apr;33(4):355-66 [PMID: 25595871]
  34. Pharmacoeconomics. 2011 Jun;29(6):455-9 [PMID: 21568356]
  35. Pharmacoeconomics. 2018 Aug;36(8):889-901 [PMID: 29679317]
  36. Health Serv Res. 2008 Aug;43(4):1204-22 [PMID: 18355261]
  37. Health Econ. 2018 Jun;27(6):1024-1040 [PMID: 29573044]

Grants

  1. MC_UU_12023/21/Medical Research Council
  2. MR/K02177X/1/Medical Research Council
  3. SRF-2013-06-016/Department of Health

MeSH Term

Bias
Cost-Benefit Analysis
Data Interpretation, Statistical
Humans
Models, Statistical

Word Cloud

Created with Highcharts 10.0.0datamissingframeworkmayhealthMNARCEABayesiananalysiseconomicsstudiesapproaches"missingrandomtruesensitivityanalysespracticalaccessiblecost-effectivenessapproachexpertHealthincreasinglyusingmultipleimputationassume"assumptionoftenquestionableas-evengivenobserveddata-theprobabilityreflectunobservedoutcomespatients'statuscasesmethodologicalguidelinesrecommendrecogniserandom"calldevelopmentexploringrobustnessconclusionsassumptionsLittleattentionpaidproblemgeneralparticularpaperproposeoutcomecostincludesallowsanalystdrawopinionillustratecomparingendovascularstrategyopenrepairpatientsrupturedabdominalaorticaneurysmprovidesoftwaretoolsimplementeconomicevaluationelicitationpattern-mixturemodel

Similar Articles

Cited By (11)