Observational constraint on cloud susceptibility weakened by aerosol retrieval limitations.

Po-Lun Ma, Philip J Rasch, Hélène Chepfer, David M Winker, Steven J Ghan
Author Information
  1. Po-Lun Ma: Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN K9-30, Richland, WA, 99354, USA. Po-Lun.Ma@pnnl.gov. ORCID
  2. Philip J Rasch: Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN K9-30, Richland, WA, 99354, USA. ORCID
  3. Hélène Chepfer: Laboratoire Météorologie Dynamique, Institute Pierre Simon Laplace, Sorbonne Université, 4, Place Jussieu, 75005, Paris, France.
  4. David M Winker: NASA Langley Research Center, MS/475, Hampton, VA, 23681, USA. ORCID
  5. Steven J Ghan: Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, MSIN K9-30, Richland, WA, 99354, USA. ORCID

Abstract

Aerosol-cloud interactions remain a major uncertainty in climate research. Studies have indicated that model estimates of cloud susceptibility to aerosols frequently exceed satellite estimates, motivating model reformulations to increase agreement. Here we show that conventional ways of using satellite information to estimate susceptibility can serve as only a weak constraint on models because the estimation is sensitive to errors in the retrieval procedures. Using instrument simulators to investigate differences between model and satellite estimates of susceptibilities, we find that low aerosol loading conditions are not well characterized by satellites, but model clouds are sensitive to aerosol perturbations in these conditions. We quantify the observational requirements needed to constrain models, and find that the nighttime lidar measurements of aerosols provide a better characterization of tenuous aerosols. We conclude that observational uncertainties and limitations need to be accounted for when assessing the role of aerosols in the climate system.

References

  1. Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13404-8 [PMID: 21808047]
  2. Science. 2002 Nov 1;298(5595):1012-5 [PMID: 12411701]
  3. Science. 2002 Feb 1;295(5556):834-8 [PMID: 11823636]
  4. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5781-90 [PMID: 27222566]
  5. Proc Natl Acad Sci U S A. 2017 May 9;114(19):4899-4904 [PMID: 28446614]
  6. Science. 1989 Sep 15;245(4923):1227-30 [PMID: 17747885]
  7. Atmos Meas Tech. 2018;11(11):6107-6135 [PMID: 31921372]
  8. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5804-11 [PMID: 26921324]
  9. Nature. 2017 Jun 22;546(7659):485-491 [PMID: 28640263]
  10. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18466-71 [PMID: 25512511]
  11. Nature. 2013 Nov 7;503(7474):67-71 [PMID: 24201280]
  12. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5828-34 [PMID: 26944081]