Electronic Preresonance Stimulated Raman Scattering Microscopy.

Lu Wei, Wei Min
Author Information
  1. Lu Wei: Department of Chemistry , Columbia University , New York , New York 10027 , United States.
  2. Wei Min: Department of Chemistry , Columbia University , New York , New York 10027 , United States. ORCID

Abstract

Optical microscopy has generated great impact for modern research. While fluorescence microscopy provides the ultimate sensitivity, it generally lacks chemical information. Complementarily, vibrational imaging methods provide rich chemical-bond-specific contrasts. Nonetheless, they usually suffer from unsatisfying sensitivity or compromised biocompatibility. Recently, electronic preresonance stimulated Raman scattering (EPR-SRS) microscopy was reported, achieving simultaneous high detection sensitivity and superb vibrational specificity of chromophores. With newly synthesized Raman-active dyes, this method readily breaks the optical color barrier of fluorescence microscopy and is well-suited for supermultiplex imaging in biological samples. In this Perspective, we first review previous utilizations of electronic resonance in various Raman spectroscopy and microscopy. We then discuss the physical origin and uniqueness of the electronic preresonance region, followed by quantitative analysis of the enhancement factors involved in EPR-SRS microscopy. On this basis, we provide an outlook for future development as well as the broad applications in biophotonics.

References

  1. Chemphyschem. 2009 Feb 2;10(2):344-7 [PMID: 19115321]
  2. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  3. Science. 2010 Dec 3;330(6009):1368-70 [PMID: 21127249]
  4. J Am Chem Soc. 2016 Aug 3;138(30):9365-8 [PMID: 27420907]
  5. Chemphyschem. 2008 Apr 4;9(5):697-9 [PMID: 18330856]
  6. J Biomed Opt. 2016 Jun;21(6):61003 [PMID: 26719944]
  7. Angew Chem Int Ed Engl. 2015 Aug 17;54(34):9821-5 [PMID: 26207979]
  8. Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):28-32 [PMID: 22184220]
  9. Science. 1997 Feb 21;275(5303):1102-6 [PMID: 9027306]
  10. J Am Chem Soc. 2014 Jun 18;136(24):8820-8 [PMID: 24869754]
  11. Sci Rep. 2016 Jun 24;6:28483 [PMID: 27339882]
  12. Nat Methods. 2018 Mar;15(3):194-200 [PMID: 29334378]
  13. Biomaterials. 2015 Jun;53:25-31 [PMID: 25890703]
  14. Sci Transl Med. 2015 Oct 14;7(309):309ra163 [PMID: 26468325]
  15. Anal Chem. 2014 Aug 5;86(15):7782-7 [PMID: 24975056]
  16. Nat Methods. 2014 Apr;11(4):410-2 [PMID: 24584195]
  17. Nat Methods. 2011 Feb;8(2):135-8 [PMID: 21240281]
  18. Nat Rev Mol Cell Biol. 2002 Dec;3(12):906-18 [PMID: 12461557]
  19. Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4558-63 [PMID: 25825736]
  20. Nat Methods. 2005 Dec;2(12):910-9 [PMID: 16299476]
  21. ACS Chem Biol. 2015 Mar 20;10(3):901-8 [PMID: 25560305]
  22. Acc Chem Res. 2016 Aug 16;49(8):1494-502 [PMID: 27486796]
  23. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2622-6 [PMID: 4506783]
  24. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  25. Light Sci Appl. 2015;4:null [PMID: 26167336]
  26. Sci Rep. 2014 Oct 29;4:6807 [PMID: 25351207]
  27. J Biomed Opt. 2012 Jul;17(7):076001 [PMID: 22894484]
  28. Nat Photonics. 2014;8:627-634 [PMID: 25621002]
  29. Annu Rev Phys Chem. 2012;63:65-87 [PMID: 22224704]
  30. Anal Chim Acta. 2008 Jan 14;606(2):119-34 [PMID: 18082644]
  31. J Am Chem Soc. 2009 Jan 21;131(2):849-54 [PMID: 19140802]
  32. Sci Rep. 2015 Jan 22;5:7930 [PMID: 25608867]
  33. J Biophotonics. 2012 May;5(5-6):387-95 [PMID: 22344721]
  34. Biochemistry. 2017 Oct 3;56(39):5165-5170 [PMID: 28704030]
  35. Curr Opin Chem Biol. 2011 Dec;15(6):831-7 [PMID: 22055495]
  36. Appl Spectrosc. 2003 Nov;57(11):1317-23 [PMID: 14658143]
  37. Cell Stem Cell. 2017 Mar 2;20(3):303-314.e5 [PMID: 28041894]
  38. Nat Commun. 2016 Oct 31;7:13283 [PMID: 27796305]
  39. Science. 2015 Nov 27;350(6264):aaa8870 [PMID: 26612955]
  40. Sci Rep. 2016 Dec 21;6:39660 [PMID: 28000773]
  41. Annu Rev Phys Chem. 1988;39:537-88 [PMID: 3075468]
  42. Chem Rev. 2017 Jun 14;117(11):7583-7613 [PMID: 28610424]
  43. Annu Rev Phys Chem. 2011;62:507-30 [PMID: 21453061]
  44. Chem Rev. 2017 Apr 12;117(7):5070-5094 [PMID: 27966347]
  45. Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11624-9 [PMID: 26324899]
  46. Nat Microbiol. 2016 Aug 01;1(10):16124 [PMID: 27670110]
  47. Nat Chem. 2014 Jul;6(7):614-22 [PMID: 24950332]
  48. Nat Biomed Eng. 2017;1:null [PMID: 28955599]
  49. Angew Chem Int Ed Engl. 2014 Jun 2;53(23):5827-31 [PMID: 24753329]
  50. Analyst. 2017 Oct 23;142(21):4018-4029 [PMID: 28875184]

Grants

  1. DP2 EB016573/NIBIB NIH HHS
  2. R01 EB020892/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0microscopysensitivityelectronicRamanfluorescencevibrationalimagingprovidepreresonanceEPR-SRSOpticalgeneratedgreatimpactmodernresearchprovidesultimategenerallylackschemicalinformationComplementarilymethodsrichchemical-bond-specificcontrastsNonethelessusuallysufferunsatisfyingcompromisedbiocompatibilityRecentlystimulatedscatteringreportedachievingsimultaneoushighdetectionsuperbspecificitychromophoresnewlysynthesizedRaman-activedyesmethodreadilybreaksopticalcolorbarrierwell-suitedsupermultiplexbiologicalsamplesPerspectivefirstreviewpreviousutilizationsresonancevariousspectroscopydiscussphysicaloriginuniquenessregionfollowedquantitativeanalysisenhancementfactorsinvolvedbasisoutlookfuturedevelopmentwellbroadapplicationsbiophotonicsElectronicPreresonanceStimulatedScatteringMicroscopy

Similar Articles

Cited By