Laminopathies: what can humans learn from fruit flies.

Marta Pałka, Aleksandra Tomczak, Katarzyna Grabowska, Magdalena Machowska, Katarzyna Piekarowicz, Dorota Rzepecka, Ryszard Rzepecki
Author Information
  1. Marta Pałka: Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
  2. Aleksandra Tomczak: Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
  3. Katarzyna Grabowska: Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
  4. Magdalena Machowska: Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
  5. Katarzyna Piekarowicz: Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
  6. Dorota Rzepecka: Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
  7. Ryszard Rzepecki: Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland. ORCID

Abstract

Lamin proteins are type V intermediate filament proteins (IFs) located inside the cell nucleus. They are evolutionarily conserved and have similar domain organization and properties to cytoplasmic IFs. Lamins provide a skeletal network for chromatin, the nuclear envelope, nuclear pore complexes and the entire nucleus. They are also responsible for proper connections between the karyoskeleton and structural elements in the cytoplasm: actin and the microtubule and cytoplasmic IF networks. Lamins affect transcription and splicing either directly or indirectly. Translocation of active genes into the close proximity of nuclear lamina is thought to result in their transcriptional silencing. Mutations in genes coding for lamins and interacting proteins in humans result in various genetic disorders, called laminopathies. Human genes coding for A-type lamin () are the most frequently mutated. The resulting phenotypes include muscle, cardiac, neuronal, lipodystrophic and metabolic pathologies, early aging phenotypes, and combined complex phenotypes. The genome codes for lamin B-type (lamin Dm), lamin A-type (lamin C), and for LEM-domain proteins, BAF, LINC-complex proteins and all typical nuclear proteins. The fruit fly system is simpler than the vertebrate one since in flies there is only single lamin B-type and single lamin A-type protein, as opposed to the complex system of B- and A-type lamins in , and . This offers a unique opportunity to study laminopathies. Applying genetic tools based on Gal4 and in vitro nuclear assembly system to the fruit fly model may successfully advance knowledge of laminopathies. Here, we review studies of the laminopathies in the fly model system.

Keywords

References

  1. J Struct Biol. 1996 Jul-Aug;117(1):1-15 [PMID: 8776884]
  2. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2852-7 [PMID: 10077600]
  3. Cell Mol Biol Lett. 2002;7(4):1019-35 [PMID: 12511969]
  4. J Cell Biol. 1987 Sep;105(3):1087-98 [PMID: 2821008]
  5. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3282-7 [PMID: 19218438]
  6. J Cell Biol. 2014 Mar 3;204(5):669-82 [PMID: 24567359]
  7. Open Biol. 2015 Nov;5(11): [PMID: 26581574]
  8. J Cell Sci. 2004 Apr 15;117(Pt 10):2015-28 [PMID: 15054108]
  9. J Cell Sci. 2014 Apr 15;127(Pt 8):1792-804 [PMID: 24522183]
  10. Curr Opin Genet Dev. 2016 Apr;37:129-136 [PMID: 27110666]
  11. J Cell Sci. 1995 May;108 ( Pt 5):2027-35 [PMID: 7657722]
  12. J Cell Sci. 1995 Sep;108 ( Pt 9):3137-44 [PMID: 8537453]
  13. Exp Cell Res. 1999 May 1;248(2):350-7 [PMID: 10222127]
  14. Nucleus. 2011 Sep-Oct;2(5):478-88 [PMID: 21989239]
  15. Methods Cell Biol. 1998;53:397-416 [PMID: 9348518]
  16. Nat Cell Biol. 2001 Sep;3(9):848-51 [PMID: 11533666]
  17. Methods Enzymol. 2016;568:707-26 [PMID: 26795490]
  18. J Cell Sci. 2003 Sep 15;116(Pt 18):3811-23 [PMID: 12902403]
  19. J Genet. 2010 Apr;89(1):37-49 [PMID: 20505245]
  20. Eur J Cell Biol. 2014 Jul;93(7):308-21 [PMID: 25059907]
  21. Eur J Cell Biol. 2006 Feb;85(2):91-105 [PMID: 16439308]
  22. Mol Biol Cell. 1997 Aug;8(8):1439-48 [PMID: 9285817]
  23. J Cell Sci. 1993 Apr;104 ( Pt 4):1263-72 [PMID: 8314904]
  24. Nature. 2017 Mar 9;543(7644):261-264 [PMID: 28241138]
  25. Int Rev Cytol. 2007;261:1-46 [PMID: 17560279]
  26. J Cell Biol. 2002 Feb 18;156(4):603-8 [PMID: 11854306]
  27. PLoS One. 2012;7(2):e32649 [PMID: 22393432]
  28. Dev Biol. 2005 Aug 1;284(1):219-32 [PMID: 15996653]
  29. J Cell Sci. 1997 Oct;110 ( Pt 20):2519-32 [PMID: 9372441]
  30. J Cell Biol. 1997 Jun 2;137(5):1001-16 [PMID: 9166402]
  31. Genetics. 2005 Sep;171(1):185-96 [PMID: 15965247]
  32. Hum Mol Genet. 2013 Jun 15;22(12):2335-49 [PMID: 23427149]
  33. Genetics. 2014 Jun;197(2):653-65 [PMID: 24700158]
  34. Eur J Cell Biol. 1994 Apr;63(2):299-306 [PMID: 8082654]
  35. FEBS Lett. 2012 Feb 17;586(4):314-8 [PMID: 22265972]
  36. Genes Dev. 2008 Dec 15;22(24):3409-21 [PMID: 19141474]
  37. Eur J Cell Biol. 2004 Jan;82(12):605-16 [PMID: 15035436]
  38. J Cell Biol. 1992 Oct;119(1):17-25 [PMID: 1527167]
  39. J Cell Sci. 1995 Oct;108 ( Pt 10):3189-98 [PMID: 7593280]
  40. Cold Spring Harb Symp Quant Biol. 2010;75:585-97 [PMID: 21502404]
  41. J Cell Sci. 1999 Aug;112 ( Pt 15):2485-92 [PMID: 10393804]
  42. PLoS One. 2009 Oct 26;4(10):e7564 [PMID: 19855837]
  43. J Cell Biol. 2015 May 25;209(4):529-38 [PMID: 26008743]
  44. Nucleus. 2017 Sep 3;8(5):475-481 [PMID: 28635493]
  45. Hum Mol Genet. 2012 Apr 1;21(7):1544-56 [PMID: 22186027]
  46. J Biol Chem. 1990 Jul 25;265(21):12596-601 [PMID: 2115522]
  47. Development. 2010 Sep;137(18):3067-77 [PMID: 20702563]
  48. J Cell Biol. 1988 Mar;106(3):585-96 [PMID: 3126192]
  49. Aging Cell. 2008 Aug;7(4):541-51 [PMID: 18494863]
  50. Mol Cell Biol. 1997 Jul;17(7):4114-23 [PMID: 9199347]
  51. Exp Cell Res. 2007 Jun 10;313(10):2157-66 [PMID: 17451683]
  52. PLoS Genet. 2015 May 21;11(5):e1005231 [PMID: 25996830]
  53. Curr Biol. 2014 Aug 18;24(16):1909-17 [PMID: 25127216]
  54. J Cell Biol. 1987 Aug;105(2):771-90 [PMID: 3624309]
  55. Methods Mol Biol. 2016;1478:33-52 [PMID: 27730574]
  56. Cell Death Differ. 2011 Aug;18(8):1305-15 [PMID: 21311568]
  57. J Struct Biol. 2012 Jan;177(1):113-8 [PMID: 22085746]
  58. Nucleus. 2018 Jan 1;9(1):227-234 [PMID: 29557730]
  59. Mol Biol Cell. 2017 Jul 7;28(14):1984-1996 [PMID: 28057760]
  60. J Cell Biol. 1989 Feb;108(2):255-65 [PMID: 2492999]
  61. Cell Mol Biol Lett. 2002;7(3):859-76 [PMID: 12378269]
  62. Science. 2013 Aug 30;341(6149):1240104 [PMID: 23990565]
  63. Nucleus. 2012 Jan-Feb;3(1):44-59 [PMID: 22156746]
  64. Mol Cell Biol. 1998 Jul;18(7):4315-23 [PMID: 9632815]
  65. Dev Biol. 2013 Jan 1;373(1):216-27 [PMID: 22982669]
  66. J Invest Dermatol. 2015 Aug;135(8):2031-2039 [PMID: 25830653]
  67. Biol Open. 2016 Aug 15;5(8):1011-21 [PMID: 27402967]
  68. Cell. 2010 Feb 5;140(3):372-83 [PMID: 20144761]
  69. Mol Biol Cell. 2004 Feb;15(2):600-10 [PMID: 14617811]
  70. Annu Rev Biochem. 2015;84:131-64 [PMID: 25747401]
  71. FEBS Lett. 1997 Jan 20;401(2-3):171-4 [PMID: 9013881]
  72. PLoS Genet. 2014 Sep 11;10(9):e1004605 [PMID: 25210889]
  73. J Cell Biol. 2002 Dec 9;159(5):783-93 [PMID: 12473687]
  74. Nucleus. 2017 Jul 4;8(4):392-403 [PMID: 28430006]
  75. Nat Commun. 2015 Aug 24;6:8044 [PMID: 26299252]
  76. Genes Dev. 2008 Apr 1;22(7):832-53 [PMID: 18381888]
  77. Genetica. 2007 Mar;129(3):339-42 [PMID: 16897461]

MeSH Term

Animals
Cell Nucleus
Drosophila
Humans
Lamin Type A
Lamin Type B
Nuclear Envelope
Nuclear Lamina

Chemicals

Lamin Type A
Lamin Type B
lamin C

Word Cloud

Created with Highcharts 10.0.0laminproteinsnuclearlaminopathiesA-typeflysystemLaminLaminsgenesphenotypesfruitIFsnucleuscytoplasmicenvelopelaminaresultcodinglaminshumansgeneticcomplexB-typeDmCfliessinglemodelNucleartypeVintermediatefilamentlocatedinsidecellevolutionarilyconservedsimilardomainorganizationpropertiesprovideskeletalnetworkchromatinporecomplexesentirealsoresponsibleproperconnectionskaryoskeletonstructuralelementscytoplasm:actinmicrotubuleIFnetworksaffecttranscriptionsplicingeitherdirectlyindirectlyTranslocationactivecloseproximitythoughttranscriptionalsilencingMutationsinteractingvariousdisorderscalledHumanfrequentlymutatedresultingincludemusclecardiacneuronallipodystrophicmetabolicpathologiesearlyagingcombinedgenomecodesLEM-domainBAFLINC-complextypicalsimplervertebrateonesinceproteinopposedB-offersuniqueopportunitystudyApplyingtoolsbasedGal4vitroassemblymaysuccessfullyadvanceknowledgereviewstudiesLaminopathies:canlearnFruitLMNALaminopathy

Similar Articles

Cited By