Pre- and early postnatal nicotine exposure exacerbates autoresuscitation failure in serotonin-deficient rat neonates.

Stella Y Lee, Chrystelle M Sirieix, Eugene Nattie, Aihua Li
Author Information
  1. Stella Y Lee: Department of Physiology and Neurobiology, Geisel school of Medicine at Dartmouth, Lebanon, NH, 03756, USA. ORCID
  2. Chrystelle M Sirieix: Department of Physiology and Neurobiology, Geisel school of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
  3. Eugene Nattie: Department of Physiology and Neurobiology, Geisel school of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
  4. Aihua Li: Department of Physiology and Neurobiology, Geisel school of Medicine at Dartmouth, Lebanon, NH, 03756, USA.

Abstract

KEY POINTS: sudden infant death syndrome (SIDS) is one of the leading causes of death during the first year of life and abnormalities linked to Serotonin (5-HT) have been identified in many SIDS cases. Cigarette smoking and associated exogenous stressors, e.g. developmental nicotine exposure, may compound these serotonergic defects and any associated defects in cardiorespiratory function. Using neonatal rodent pups subjected to medullary 5-HT deficiency and perinatal nicotine exposure, we examined the impact of this interplay of factors on the neonates' ability to autoresuscitate at specific ages. In perinatal nicotine-exposed 5-HT deficient pups, impaired autoresuscitation along with significantly delayed post-anoxic recovery of normal breathing and heart rate was observed at postnatal day 10 (P10). We found that the interaction between 5-HT deficiency and perinatal nicotine exposure can significantly increase pups' vulnerability to environmental stressors and exacerbate defects in cardiorespiratory protective reflexes to repetitive anoxia during the development period.
ABSTRACT: Cigarette smoking during pregnancy increases the risk of sudden infant death syndrome (SIDS), and nicotine replacements, a key ingredient of cigarettes, have been recently prescribed to women who wish to quit smoking during their pregnancy. Serotonin (5-HT) abnormalities have been consistently identified in many SIDS cases. Here we investigated the effects of perinatal nicotine exposure in mild 5-HT deficiency rat neonates on autoresuscitation, a protective cardiorespiratory reflex. The mild 5-HT deficiency was induced by a maternal tryptophan-deficient diet, and nicotine was delivered from embryonic day (E) 4 to postnatal day (P) 10 at 6 mg kg  day through an osmotic pump. In P10 rats, nicotine exposure exacerbates autoresuscitation failure (mortality) in mildly 5-HT-deficient rats to a greater extent than in controls (P = 0.029). The recovery of eupnoea and heart rate to baseline values following repetitive anoxic events (which elicit an apnoea accompanied by a bradycardia) is significantly delayed in 5-HT-deficient rats treated with nicotine, making them more susceptible to failure of autoresuscitation (eupnoea recovery: P = 0.0053; heart rate recovery: P = < 0.0001). Neither 5-HT deficiency nor nicotine exposure alone appears to affect the ability to autoresuscitate significantly when compared among the four treatments. The increased vulnerability to environmental stressors, e.g. severe hypoxia, asphyxia, or anoxia, in these nicotine-exposed 5-HT-deficient neonates during postnatal developmental period is evident.

Keywords

References

  1. J Pediatr. 1998 Aug;133(2):232-6 [PMID: 9709711]
  2. J Appl Physiol (1985). 2009 Jun;106(6):1785-92 [PMID: 19213929]
  3. Pediatr Res. 1999 Mar;45(3):350-4 [PMID: 10088653]
  4. J Pediatr Psychol. 2006 Jan-Feb;31(1):5-14 [PMID: 15905420]
  5. Am J Respir Cell Mol Biol. 2015 Oct;53(4):489-99 [PMID: 25695895]
  6. Am J Respir Crit Care Med. 2002 Jul 1;166(1):92-7 [PMID: 12091177]
  7. Brain Res Bull. 1995;38(1):69-75 [PMID: 7552377]
  8. Proc Soc Exp Biol Med. 1963 Jul;113:645-8 [PMID: 14024202]
  9. N Engl J Med. 2012 Mar 1;366(9):808-18 [PMID: 22375972]
  10. Am J Respir Crit Care Med. 2002 Dec 15;166(12 Pt 1):1544-9 [PMID: 12471072]
  11. J Appl Physiol (1985). 2011 Sep;111(3):825-33 [PMID: 21680874]
  12. J Neurophysiol. 2009 Mar;101(3):1141-50 [PMID: 19091927]
  13. J Appl Physiol (1985). 1998 Dec;85(6):2066-74 [PMID: 9843527]
  14. J Appl Physiol (1985). 2011 Feb;110(2):318-28 [PMID: 20966190]
  15. Pediatr Pulmonol. 2003 Aug;36(2):113-22 [PMID: 12833490]
  16. Arch Pediatr Adolesc Med. 1999 Nov;153(11):1136-41 [PMID: 10555714]
  17. N Engl J Med. 2009 Aug 20;361(8):795-805 [PMID: 19692691]
  18. J Appl Toxicol. 2010 Jan;30(1):53-8 [PMID: 19728315]
  19. J Physiol. 2015 Jun 15;593(12):2547-9 [PMID: 26095019]
  20. Respir Physiol Neurobiol. 2005 Nov 15;149(1-3):243-55 [PMID: 15941675]
  21. Respir Physiol. 2001 Aug;127(1):61-73 [PMID: 11445201]
  22. Respir Physiol Neurobiol. 2008 Dec 31;164(3):350-7 [PMID: 18775520]
  23. Semin Perinatol. 1996 Apr;20(2):115-26 [PMID: 8857697]
  24. Brain Pathol. 2008 Jan;18(1):21-31 [PMID: 17924983]
  25. Amino Acids. 2006 Nov;31(4):421-5 [PMID: 16699826]
  26. Pediatr Res. 1999 Feb;45(2):166-72 [PMID: 10022585]
  27. N Engl J Med. 2012 Mar 1;366(9):846-7 [PMID: 22375978]
  28. Prev Med Rep. 2016 Sep 07;4:481-5 [PMID: 27635381]
  29. J Appl Physiol (1985). 2013 Jun 15;114(12):1668-76 [PMID: 23558391]
  30. J Neuropathol Exp Neurol. 2000 May;59(5):377-84 [PMID: 10888367]
  31. J Appl Physiol (1985). 2009 Nov;107(5):1579-90 [PMID: 19729586]
  32. Gerontology. 2008;54(4):232-7 [PMID: 18503250]
  33. JAMA. 2006 Nov 1;296(17):2124-32 [PMID: 17077377]
  34. Respir Physiol Neurobiol. 2005 Nov 15;149(1-3):325-41 [PMID: 15970470]
  35. Pak J Pharm Sci. 2006 Jan;19(1):11-5 [PMID: 16632446]
  36. Pediatrics. 2004 Jul;114(1):234-8 [PMID: 15231934]
  37. Semin Neonatol. 2000 Aug;5(3):231-41 [PMID: 10956448]
  38. Brain Res. 2001 Sep 28;914(1-2):166-78 [PMID: 11578609]
  39. Pediatrics. 1994 May;93(5):778-83 [PMID: 8165078]
  40. World J Pediatr. 2015 Feb;11(1):41-7 [PMID: 25447630]
  41. Pediatrics. 2000 Apr;105(4):E52 [PMID: 10742373]
  42. Acta Vitaminol Enzymol. 1975;29(1-6):72-8 [PMID: 1244128]
  43. Acta Neuropathol. 2009 Mar;117(3):257-65 [PMID: 19052756]
  44. J Psychopharmacol. 1995 Jan;9(4):336-41 [PMID: 22298399]
  45. J Neurosci. 2004 Oct 20;24(42):9261-8 [PMID: 15496661]
  46. JAMA. 2010 Feb 3;303(5):430-7 [PMID: 20124538]
  47. NCHS Data Brief. 2017 Dec;(293):1-8 [PMID: 29319473]
  48. Prog Brain Res. 1988;73:137-57 [PMID: 3047793]
  49. Toxicol Sci. 2015 Sep;147(1):178-89 [PMID: 26085346]
  50. Teratology. 1997 Mar;55(3):177-84 [PMID: 9181671]
  51. J Neurosci. 2008 Mar 5;28(10):2495-505 [PMID: 18322094]
  52. Pediatr Res. 1999 Jul;46(1):33-9 [PMID: 10400131]
  53. J Midwifery Womens Health. 2010 Mar-Apr;55(2):143-52 [PMID: 20189133]
  54. Virchows Arch. 2006 Dec;449(6):697-706 [PMID: 17091255]
  55. Arch Ital Biol. 2001 Apr;139(3):185-94 [PMID: 11330200]
  56. Am J Physiol Regul Integr Comp Physiol. 2000 Jul;279(1):R39-46 [PMID: 10896862]
  57. Neurosci Lett. 1999 Jun 4;267(3):206-8 [PMID: 10381012]
  58. Neurosci Biobehav Rev. 2017 Jan;72:176-189 [PMID: 27890689]
  59. Crit Rev Toxicol. 2005 Oct-Nov;35(8-9):703-11 [PMID: 16417037]
  60. J Appl Physiol (1985). 2013 Dec;115(12):1733-41 [PMID: 24136109]
  61. Am J Physiol Regul Integr Comp Physiol. 2009 Jun;296(6):R1783-96 [PMID: 19369586]
  62. Clin Pharmacol Ther. 1982 Dec;32(6):758-64 [PMID: 7140139]
  63. Paediatr Respir Rev. 2004;5 Suppl A:S383-6 [PMID: 14980301]
  64. J Neuropathol Exp Neurol. 1998 Nov;57(11):1018-25 [PMID: 9825938]
  65. Am J Physiol Regul Integr Comp Physiol. 2010 May;298(5):R1333-42 [PMID: 20421636]
  66. J Neurosci. 2016 Apr 6;36(14):3943-53 [PMID: 27053202]
  67. J Appl Physiol (1985). 1992 Feb;72(2):677-85 [PMID: 1559948]
  68. Annu Rev Pathol. 2009;4:517-50 [PMID: 19400695]
  69. J Pediatr. 1993 Jun;122(6):874-80 [PMID: 8501562]
  70. Am J Epidemiol. 1997 Aug 1;146(3):249-57 [PMID: 9247009]

Grants

  1. HD036379/NIH Program Project Grant

MeSH Term

Animals
Animals, Newborn
Cotinine
Female
Hypoxia
Male
Maternal-Fetal Exchange
Medulla Oblongata
Nicotine
Pregnancy
Rats, Sprague-Dawley
Respiration
Serotonin

Chemicals

Serotonin
Nicotine
Cotinine

Word Cloud

Created with Highcharts 10.0.0nicotine5-HTexposuredeficiencyautoresuscitationSIDSperinatalsignificantlypostnataldeathsmokingstressorsdefectscardiorespiratoryheartratedayneonatesratsfailure5-HT-deficientinfantsyndromeabnormalitiesidentifiedmanycasesCigaretteassociatedegdevelopmentalpupsabilityautoresuscitatenicotine-exposeddelayedrecovery10P10vulnerabilityenvironmentalprotectiverepetitiveanoxiaperiodpregnancySerotoninmildratexacerbatesP = 0eupnoearecovery:KEYPOINTS:SuddenoneleadingcausesfirstyearlifelinkedserotoninexogenousmaycompoundserotonergicfunctionUsingneonatalrodentsubjectedmedullaryexaminedimpactinterplayfactorsneonates'specificagesdeficientimpairedalongpost-anoxicnormalbreathingobservedfoundinteractioncanincreasepups'exacerbatereflexesdevelopmentABSTRACT:increasesrisksuddenreplacementskeyingredientcigarettesrecentlyprescribedwomenwishquitconsistentlyinvestigatedeffectsreflexinducedmaternaltryptophan-deficientdietdeliveredembryonicE4P6 mgkg dayosmoticpumpmortalitymildlygreaterextentcontrols029baselinevaluesfollowinganoxiceventselicitapnoeaaccompaniedbradycardiatreatedmakingsusceptible0053P = < 00001NeitheraloneappearsaffectcomparedamongfourtreatmentsincreasedseverehypoxiaasphyxiaevidentPre-earlyserotonin-deficientDevelopmentalTripleRiskhypothesis

Similar Articles

Cited By (10)