Whole genome and transcriptome maps of the entirely black native Korean chicken breed Yeonsan Ogye.

Jang-Il Sohn, Kyoungwoo Nam, Hyosun Hong, Jun-Mo Kim, Dajeong Lim, Kyung-Tai Lee, Yoon Jung Do, Chang Yeon Cho, Namshin Kim, Han-Ha Chai, Jin-Wu Nam
Author Information
  1. Jang-Il Sohn: Department of Life Science, Hanyang University, Seoul, 133-791, Republic of Korea.
  2. Kyoungwoo Nam: Department of Life Science, Hanyang University, Seoul, 133-791, Republic of Korea.
  3. Hyosun Hong: Department of Life Science, Hanyang University, Seoul, 133-791, Republic of Korea.
  4. Jun-Mo Kim: Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
  5. Dajeong Lim: Department of Animal Biotechnology & Environment, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea.
  6. Kyung-Tai Lee: Department of Animal Biotechnology & Environment, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea.
  7. Yoon Jung Do: Department of Animal Biotechnology & Environment, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea.
  8. Chang Yeon Cho: Animal Genetic Resource Research Center, National Institute of Animal Science, RDA, Namwon, 55717, Republic of Korea.
  9. Namshin Kim: Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Republic of Korea.
  10. Han-Ha Chai: Department of Animal Biotechnology & Environment, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea.
  11. Jin-Wu Nam: Department of Life Science, Hanyang University, Seoul, 133-791, Republic of Korea.

Abstract

Background: Yeonsan Ogye (YO), an indigenous Korean chicken breed (Gallus gallus domesticus), has entirely black external features and internal organs. In this study, the draft genome of YO was assembled using a hybrid de novo assembly method that takes advantage of high-depth Illumina short reads (376.6X) and low-depth Pacific Biosciences (PacBio) long reads (9.7X).
Findings: The contig and scaffold NG50s of the hybrid de novo assembly were 362.3 Kbp and 16.8 Mbp, respectively. The completeness (97.6%) of the draft genome (Ogye_1.1) was evaluated with single-copy orthologous genes using Benchmarking Universal Single-Copy Orthologs and found to be comparable to the current chicken reference genome (galGal5; 97.4%; contigs were assembled with high-depth PacBio long reads (50X) and scaffolded with short reads) and superior to other avian genomes (92%-93%; assembled with short read-only or hybrid methods). Compared to galGal4 and galGal5, the draft genome included 551 structural variations including the fibromelanosis (FM) locus duplication, related to hyperpigmentation. To comprehensively reconstruct transcriptome maps, RNA sequencing and reduced representation bisulfite sequencing data were analyzed from 20 tissues, including 4 black tissues (skin, shank, comb, and fascia). The maps included 15,766 protein-coding and 6,900 long noncoding RNA genes, many of which were tissue-specifically expressed and displayed tissue-specific DNA methylation patterns in the promoter regions.
Conclusions: We expect that the resulting genome sequence and transcriptome maps will be valuable resources for studying domestic chicken breeds, including black-skinned chickens, as well as for understanding genomic differences between breeds and the evolution of hyperpigmented chickens and functional elements related to hyperpigmentation.

References

  1. Nucleic Acids Res. 2016 Jan 4;44(D1):D203-8 [PMID: 26586799]
  2. Bioinformatics. 2015 Nov 15;31(22):3694-6 [PMID: 26220959]
  3. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  4. PLoS Genet. 2011 Dec;7(12):e1002412 [PMID: 22216010]
  5. Cytometry A. 2005 May;65(1):26-34 [PMID: 15779063]
  6. Genome Res. 2012 Mar;22(3):568-76 [PMID: 22300766]
  7. Genome Biol. 2014;15(12):557 [PMID: 25496777]
  8. Gigascience. 2014 Jul 08;3:11 [PMID: 25061512]
  9. Bioinformatics. 2012 Sep 15;28(18):i333-i339 [PMID: 22962449]
  10. BMC Biol. 2017 Nov 16;15(1):110 [PMID: 29145861]
  11. Mob DNA. 2015 Jun 02;6:11 [PMID: 26045719]
  12. PLoS Biol. 2010 Sep 07;8(9): [PMID: 20838655]
  13. Brief Bioinform. 2018 Jan 1;19(1):23-40 [PMID: 27742661]
  14. Proc Biol Sci. 2009 Jan 7;276(1654):55-61 [PMID: 18765340]
  15. PLoS One. 2016 Feb 19;11(2):e0148940 [PMID: 26895175]
  16. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  17. Genome Res. 2017 Jun;27(6):1050-1062 [PMID: 28396519]
  18. Gigascience. 2012 Dec 27;1(1):18 [PMID: 23587118]
  19. J Comput Biol. 2004;11(2-3):377-94 [PMID: 15285897]
  20. Nature. 2010 Apr 1;464(7289):757-62 [PMID: 20360741]
  21. PLoS One. 2012;7(2):e30619 [PMID: 22312429]
  22. Genome Res. 2010 Mar;20(3):320-31 [PMID: 20133333]
  23. Curr Biol. 2016 Feb 8;26(3):344-50 [PMID: 26804558]
  24. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  25. Genome Biol Evol. 2015 Sep 02;7(9):2680-91 [PMID: 26338191]
  26. Nat Commun. 2013;4:2071 [PMID: 23817352]
  27. Nat Genet. 2013 May;45(5):563-6 [PMID: 23525076]
  28. Bioinformatics. 2014 Dec 15;30(24):3506-14 [PMID: 25165095]
  29. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  30. PLoS One. 2014 Apr 23;9(4):e95599 [PMID: 24759626]
  31. Nucleic Acids Res. 1988 Feb 11;16(3):1215 [PMID: 3344216]
  32. Nat Methods. 2017 Jan;14(1):65-67 [PMID: 27892959]
  33. G3 (Bethesda). 2017 Jan 5;7(1):109-117 [PMID: 27852011]
  34. Nature. 2004 Dec 9;432(7018):695-716 [PMID: 15592404]
  35. Genome Res. 2012 Mar;22(3):577-91 [PMID: 22110045]
  36. Nat Commun. 2016 Jan 25;7:10474 [PMID: 26805030]
  37. Science. 2014 Dec 12;346(6215):1311-20 [PMID: 25504712]
  38. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  39. Genome Biol. 2014 Jun 26;15(6):R84 [PMID: 24970577]
  40. Sci Rep. 2014 Oct 13;4:6546 [PMID: 25306978]
  41. Bioinformatics. 2015 May 15;31(10):1569-76 [PMID: 25609798]
  42. J Hered. 2010 May-Jun;101(3):339-50 [PMID: 20064842]
  43. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W345-9 [PMID: 17631615]
  44. Br Poult Sci. 2011 Dec;52(6):675-85 [PMID: 22221233]
  45. Genome Res. 2011 Dec;21(12):2224-41 [PMID: 21926179]
  46. J Sci Food Agric. 2015 Jun;95(8):1730-5 [PMID: 25155871]
  47. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  48. Science. 2013 Mar 1;339(6123):1063-7 [PMID: 23371554]
  49. Gigascience. 2018 Jul 1;7(7): [PMID: 30010758]
  50. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1513-8 [PMID: 21187386]
  51. Science. 2014 Jun 20;344(6190):1410-4 [PMID: 24948738]
  52. Methods Mol Biol. 2012;859:29-51 [PMID: 22367864]
  53. PLoS One. 2012;7(11):e47768 [PMID: 23185243]
  54. BMC Genomics. 2013 Nov 14;14:789 [PMID: 24225384]
  55. J Comput Biol. 2011 Nov;18(11):1681-91 [PMID: 21929371]
  56. Bioinformatics. 2011 Jun 1;27(11):1571-2 [PMID: 21493656]
  57. Genome. 2009 Mar;52(3):261-7 [PMID: 19234554]
  58. BMC Bioinformatics. 2014 Jun 20;15:211 [PMID: 24950923]
  59. Sci Rep. 2017 Nov 1;7(1):14817 [PMID: 29093522]
  60. Nucleic Acids Res. 2013 Apr 1;41(6):e74 [PMID: 23335781]
  61. BMC Genomics. 2014 Jun 19;15:499 [PMID: 24948191]
  62. PLoS One. 2017 Apr 5;12(4):e0173147 [PMID: 28379963]

MeSH Term

Animals
Chickens
Cluster Analysis
Contig Mapping
CpG Islands
DNA Methylation
Gene Expression Profiling
Genome
Genomics
High-Throughput Nucleotide Sequencing
INDEL Mutation
Polymorphism, Single Nucleotide
Promoter Regions, Genetic
RNA, Long Noncoding
Sequence Analysis, DNA
Sequence Analysis, RNA
Transcriptome

Chemicals

RNA, Long Noncoding

Word Cloud

Created with Highcharts 10.0.0genomechickenreadsmapsblackdraftassembledhybridshortlongincludingtranscriptomeYeonsanOgyeYOKoreanbreedentirelyusingdenovoassemblyhigh-depthPacBio97genesgalGal5includedrelatedhyperpigmentationRNAsequencingtissuesbreedschickensBackground:indigenousGallusgallusdomesticusexternalfeaturesinternalorgansstudymethodtakesadvantageIllumina3766Xlow-depthPacificBiosciences97XFindings:contigscaffoldNG50s3623Kbp168Mbprespectivelycompleteness6%Ogye_11evaluatedsingle-copyorthologousBenchmarkingUniversalSingle-CopyOrthologsfoundcomparablecurrentreference4%contigs50Xscaffoldedsuperioraviangenomes92%-93%read-onlymethodsComparedgalGal4551structuralvariationsfibromelanosisFMlocusduplicationcomprehensivelyreconstructreducedrepresentationbisulfitedataanalyzed204skinshankcombfascia15766protein-coding6900noncodingmanytissue-specificallyexpresseddisplayedtissue-specificDNAmethylationpatternspromoterregionsConclusions:expectresultingsequencewillvaluableresourcesstudyingdomesticblack-skinnedwellunderstandinggenomicdifferencesevolutionhyperpigmentedfunctionalelementsWholenative

Similar Articles

Cited By (17)