Systematic Study of Nucleosome-Displacing Factors in Budding Yeast.

Chao Yan, Hengye Chen, Lu Bai
Author Information
  1. Chao Yan: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
  2. Hengye Chen: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
  3. Lu Bai: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address: lub15@psu.edu.

Abstract

Nucleosomes present a barrier for the binding of most transcription factors (TFs). However, special TFs known as nucleosome-displacing factors (NDFs) can access embedded sites and cause the depletion of the local nucleosomes as well as repositioning of the neighboring nucleosomes. Here, we developed a novel high-throughput method in yeast to identify NDFs among 104 TFs and systematically characterized the impact of orientation, affinity, location, and copy number of their binding motifs on the nucleosome occupancy. Using this assay, we identified 29 NDF motifs and divided the nuclear TFs into three groups with strong, weak, and no nucleosome-displacing activities. Further studies revealed that tight DNA binding is the key property that underlies NDF activity, and the NDFs may partially rely on the DNA replication to compete with nucleosome. Overall, our study presents a framework to functionally characterize NDFs and elucidate the mechanism of nucleosome invasion.

Keywords

References

  1. Genes Dev. 2010 Aug 15;24(16):1758-71 [PMID: 20675407]
  2. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):14012-7 [PMID: 23836672]
  3. Nat Genet. 2007 Oct;39(10):1235-44 [PMID: 17873876]
  4. Cell. 2016 Apr 21;165(3):580-92 [PMID: 27062929]
  5. J Biol Chem. 2006 Jun 16;281(24):16279-88 [PMID: 16606615]
  6. Genes Dev. 2014 Dec 15;28(24):2679-92 [PMID: 25512556]
  7. Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368 [PMID: 27924014]
  8. Science. 2005 Jul 22;309(5734):626-30 [PMID: 15961632]
  9. Mol Cell. 2015 Nov 5;60(3):422-34 [PMID: 26545077]
  10. Anal Biochem. 2011 Sep 1;416(1):117-9 [PMID: 21601557]
  11. Cell. 2008 Mar 21;132(6):958-70 [PMID: 18358809]
  12. Mol Cell Biol. 2010 Jan;30(2):399-412 [PMID: 19917725]
  13. J Mol Biol. 1988 Nov 5;204(1):109-27 [PMID: 3063825]
  14. Nat Struct Mol Biol. 2013 Mar;20(3):267-73 [PMID: 23463311]
  15. PLoS Comput Biol. 2013;9(8):e1003181 [PMID: 23990766]
  16. Cell. 2015 Apr 23;161(3):555-568 [PMID: 25892221]
  17. Nature. 2003 Oct 16;425(6959):737-41 [PMID: 14562106]
  18. Nat Genet. 2018 Feb;50(2):250-258 [PMID: 29358654]
  19. Mol Cell. 2011 Jun 24;42(6):826-36 [PMID: 21700227]
  20. Mol Cell. 2008 Dec 26;32(6):878-87 [PMID: 19111667]
  21. Cell. 2009 May 1;137(3):445-58 [PMID: 19410542]
  22. Science. 2007 Jan 12;315(5809):233-7 [PMID: 17218526]
  23. Mol Cell. 2007 Aug 3;27(3):380-92 [PMID: 17679089]
  24. Genome Res. 2008 Jul;18(7):1073-83 [PMID: 18550805]
  25. Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22534-9 [PMID: 21149679]
  26. Science. 2015 Jun 19;348(6241):1372-6 [PMID: 26089518]
  27. Cell. 2006 Aug 25;126(4):663-76 [PMID: 16904174]
  28. Cell. 2005 Jul 15;122(1):33-43 [PMID: 16009131]
  29. Genetics. 2015 Oct;201(2):525-42 [PMID: 26245832]
  30. Nat Struct Mol Biol. 2009 Aug;16(8):847-52 [PMID: 19620965]
  31. EMBO J. 2016 Jan 4;35(1):24-45 [PMID: 26516211]
  32. Cell. 2012 Jun 22;149(7):1461-73 [PMID: 22726434]
  33. Mol Cell Biol. 1995 Mar;15(3):1405-21 [PMID: 7862134]
  34. Mol Cell Biol. 2004 Oct;24(20):9152-64 [PMID: 15456886]
  35. Cell. 1997 May 2;89(3):365-71 [PMID: 9150136]
  36. Nat Genet. 2013 Sep;45(9):1021-1028 [PMID: 23892608]
  37. Nature. 2005 Jun 16;435(7044):944-7 [PMID: 15959514]
  38. Protein Sci. 1995 Sep;4(9):1832-43 [PMID: 8528081]
  39. Dev Cell. 2010 Apr 20;18(4):544-55 [PMID: 20412770]
  40. Mol Cell. 2011 May 20;42(4):465-76 [PMID: 21596311]
  41. Mol Cell. 2002 Feb;9(2):279-89 [PMID: 11864602]
  42. Nature. 2009 Jan 8;457(7226):215-8 [PMID: 19029883]
  43. Mol Cell. 2003 Jun;11(6):1587-98 [PMID: 12820971]
  44. Mol Cell. 2010 May 28;38(4):590-602 [PMID: 20513433]
  45. Expert Opin Ther Targets. 2007 Apr;11(4):507-14 [PMID: 17373880]
  46. Mol Genet Genomics. 2004 May;271(4):479-89 [PMID: 15034784]
  47. Cell. 2008 Apr 18;133(2):250-64 [PMID: 18423197]
  48. Cell. 2000 Oct 27;103(3):423-33 [PMID: 11081629]
  49. Mol Cell. 2016 Apr 7;62(1):79-91 [PMID: 27058788]
  50. Mol Cell. 2009 May 14;34(4):405-15 [PMID: 19481521]
  51. Mol Cell. 2017 Feb 16;65(4):604-617.e6 [PMID: 28212748]
  52. Curr Opin Genet Dev. 2001 Apr;11(2):199-204 [PMID: 11250144]
  53. Nucleic Acids Res. 2015 Sep 3;43(15):7292-305 [PMID: 26082499]
  54. J Cancer. 2012;3:93-5 [PMID: 22359530]
  55. Nature. 2009 Mar 19;458(7236):362-6 [PMID: 19092803]
  56. Science. 2011 May 20;332(6032):977-80 [PMID: 21596991]
  57. Nat Biotechnol. 2012 May 20;30(6):521-30 [PMID: 22609971]
  58. Mol Cell. 2017 Feb 2;65(3):565-577.e3 [PMID: 28157509]
  59. PLoS Genet. 2013 May;9(5):e1003479 [PMID: 23658529]
  60. Nucleic Acids Res. 2012 Jan;40(Database issue):D162-8 [PMID: 22140105]
  61. Trends Biochem Sci. 1997 Mar;22(3):93-7 [PMID: 9066259]
  62. Genes Dev. 2011 Nov 1;25(21):2227-41 [PMID: 22056668]
  63. Genome Res. 2011 Nov;21(11):1851-62 [PMID: 21914852]
  64. Genes Dev. 2010 Apr 15;24(8):748-53 [PMID: 20351051]
  65. Nature. 2007 Sep 6;449(7158):54-61 [PMID: 17805289]
  66. J Mol Biol. 2001 Mar 9;306(5):903-13 [PMID: 11237607]
  67. Nat Genet. 2011 Jan;43(1):27-33 [PMID: 21151129]
  68. Mol Cell. 2001 Apr;7(4):741-51 [PMID: 11336698]
  69. Oncotarget. 2015 Sep 8;6(26):21878-91 [PMID: 26215677]
  70. PLoS Genet. 2011 Nov;7(11):e1002368 [PMID: 22125492]

Grants

  1. R01 GM121858/NIGMS NIH HHS

MeSH Term

Chromatin
DNA Replication
DNA, Fungal
DNA-Binding Proteins
High-Throughput Screening Assays
Histones
Humans
Models, Molecular
Nucleosomes
Promoter Regions, Genetic
Protein Binding
Protein Multimerization
Saccharomycetales
Transcription Factors

Chemicals

Chromatin
DNA, Fungal
DNA-Binding Proteins
Histones
Nucleosomes
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0TFsNDFsnucleosomebindingtranscriptionfactorsnucleosome-displacingnucleosomesmotifsNDFDNAbiologyfactorNucleosomespresentbarrierHoweverspecialknowncanaccessembeddedsitescausedepletionlocalwellrepositioningneighboringdevelopednovelhigh-throughputmethodyeastidentifyamong104systematicallycharacterizedimpactorientationaffinitylocationcopynumberoccupancyUsingassayidentified29dividednuclearinto threegroupsstrongweakactivitiesstudiesrevealedtightkeypropertyunderliesactivitymaypartiallyrelyreplicationcompeteOverallstudypresentsframeworkfunctionallycharacterizeelucidatemechanisminvasionSystematicStudyNucleosome-DisplacingFactorsBuddingYeastAbf1Reb1chromatinopeningoligopioneersynthetic

Similar Articles

Cited By (63)