Impact of immunopathology on the antituberculous activity of pyrazinamide.

Landry Blanc, Jansy Passiflora Sarathy, Nadine Alvarez Cabrera, Paul O'Brien, Isabela Dias-Freedman, Marizel Mina, James Sacchettini, Radojka M Savic, Martin Gengenbacher, Brendan K Podell, Brendan Prideaux, Thomas Ioerger, Thomas Dick, Véronique Dartois
Author Information
  1. Landry Blanc: Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ.
  2. Jansy Passiflora Sarathy: Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ.
  3. Nadine Alvarez Cabrera: Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ.
  4. Paul O'Brien: Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ.
  5. Isabela Dias-Freedman: Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ. ORCID
  6. Marizel Mina: Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ.
  7. James Sacchettini: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX. ORCID
  8. Radojka M Savic: Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, San Francisco, CA.
  9. Martin Gengenbacher: Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ. ORCID
  10. Brendan K Podell: Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO.
  11. Brendan Prideaux: Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ. ORCID
  12. Thomas Ioerger: Department of Computer Science, Texas A&M University, College Station, TX.
  13. Thomas Dick: Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ. ORCID
  14. Véronique Dartois: Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ veronique.dartois@rutgers.edu. ORCID

Abstract

In the 1970s, inclusion of pyrazinamide (PZA) in the drug regimen of tuberculosis (TB) patients for the first 2 mo achieved a drastic reduction of therapy duration. Until now, however, the mechanisms underlying PZA's unique contribution to efficacy have remained controversial, and animal efficacy data vary across species. To understand how PZA kills bacterial populations present in critical lung lesion compartments, we first characterized a rabbit model of active TB, showing striking similarities in lesion types and fates to nonhuman primate models deemed the most appropriate surrogates of human TB. We next employed this model with lesion-centric molecular and bacteriology readouts to demonstrate that PZA exhibits potent activity against residing in difficult-to-sterilize necrotic lesions. Our data also indicate that PZA is slow acting, suggesting that PZA administration beyond the first 2 mo may accelerate the cure. In conclusion, we provide a pharmacodynamic explanation for PZA's treatment-shortening effect and deliver new tools to dissect the contribution of immune response versus drug at the lesion level.

Associated Data

RefSeq | NZ_CM001043.1

References

  1. Antimicrob Agents Chemother. 2018 Jan 25;62(2):null [PMID: 29203492]
  2. Chest. 2010 Jan;137(1):122-8 [PMID: 19749004]
  3. AMA Arch Pathol. 1954 Mar;57(3):179-93 [PMID: 13137678]
  4. Antimicrob Agents Chemother. 2007 Sep;51(9):3338-45 [PMID: 17517834]
  5. Antimicrob Agents Chemother. 2015 Nov 16;60(2):735-43 [PMID: 26574016]
  6. PLoS One. 2011 Mar 21;6(3):e17550 [PMID: 21445321]
  7. Sci Transl Med. 2014 Dec 3;6(265):265ra167 [PMID: 25473035]
  8. BMC Pulm Med. 2001;1:2 [PMID: 11737875]
  9. Sci Transl Med. 2017 Jun 14;9(394):null [PMID: 28615363]
  10. Eur J Clin Pharmacol. 2006 Sep;62(9):727-35 [PMID: 16685561]
  11. Nat Rev Immunol. 2017 Nov;17(11):691-702 [PMID: 28736436]
  12. Vet Microbiol. 2010 Aug 26;144(3-4):437-43 [PMID: 20227841]
  13. MBio. 2017 May 9;8(3): [PMID: 28487426]
  14. Int J Tuberc Lung Dis. 1999 Oct;3(10 Suppl 2):S231-79 [PMID: 10529902]
  15. Antimicrob Agents Chemother. 1988 Jul;32(7):1002-4 [PMID: 3142340]
  16. PLoS Pathog. 2011 Oct;7(10):e1002287 [PMID: 21998585]
  17. Antimicrob Agents Chemother. 2015 Dec 07;60(2):1091-6 [PMID: 26643352]
  18. Am Rev Tuberc. 1954 Oct;70(4):748-54 [PMID: 13197751]
  19. J Bacteriol. 1999 Apr;181(7):2044-9 [PMID: 10094680]
  20. Nat Med. 2014 Jan;20(1):75-9 [PMID: 24336248]
  21. Infect Immun. 2003 Oct;71(10):6004-11 [PMID: 14500521]
  22. J Exp Med. 1956 Nov 1;104(5):737-62 [PMID: 13367341]
  23. Antimicrob Agents Chemother. 2017 May 24;61(6): [PMID: 28373198]
  24. ACS Infect Dis. 2016 Apr 8;2(4):251-267 [PMID: 27227164]
  25. J Infect Dis. 2016 Nov 1;214(9):1309-1318 [PMID: 27462092]
  26. Trends Immunol. 2012 Jan;33(1):14-25 [PMID: 22094048]
  27. Antimicrob Agents Chemother. 2010 Dec;54(12):5420 [PMID: 21075978]
  28. Antimicrob Agents Chemother. 2016 Jun 20;60(7):4197-205 [PMID: 27139472]
  29. Am J Respir Crit Care Med. 2013 Jul 1;188(1):97-102 [PMID: 23593945]
  30. Nat Med. 2016 May;22(5):531-8 [PMID: 27043495]
  31. PLoS Pathog. 2014 Sep 18;10(9):e1004394 [PMID: 25233380]
  32. Tubercle. 1982 Jun;63(2):89-98 [PMID: 6758252]
  33. Am J Respir Crit Care Med. 2004 Nov 15;170(10):1124-30 [PMID: 15374844]
  34. Antimicrob Agents Chemother. 2015 Jul;59(7):4181-9 [PMID: 25941223]
  35. J Exp Med. 1966 Mar 1;123(3):469-86 [PMID: 4957011]
  36. Open Biol. 2011 Dec;1(4):110016 [PMID: 22645653]
  37. ACS Infect Dis. 2017 Nov 10;3(11):807-819 [PMID: 28991455]
  38. Tubercle. 1981 Jun;62(2):95-102 [PMID: 7029838]
  39. Antimicrob Agents Chemother. 2012 Aug;56(8):4391-402 [PMID: 22687508]
  40. Nat Genet. 2011 May;43(5):482-6 [PMID: 21516081]
  41. J Exp Med. 1956 Nov 1;104(5):763-802 [PMID: 13367342]
  42. Antimicrob Agents Chemother. 2008 Oct;52(10):3664-8 [PMID: 18694943]
  43. Tubercle. 1985 Sep;66(3):219-25 [PMID: 3931319]
  44. Acta Orthop Scand. 1950;20(2):176-80 [PMID: 14868443]
  45. Semin Respir Crit Care Med. 2004 Jun;25(3):307-15 [PMID: 16088472]
  46. J Bacteriol. 2010 Jul;192(14):3645-53 [PMID: 20472797]
  47. ACS Infect Dis. 2016 Sep 9;2(9):616-626 [PMID: 27759369]
  48. Lancet. 1972 May 20;1(7760):1079-85 [PMID: 4112569]
  49. Dis Model Mech. 2015 Jun;8(6):591-602 [PMID: 26035867]
  50. Antimicrob Agents Chemother. 2014 Dec;58(12):7258-63 [PMID: 25246400]
  51. Nat Med. 2016 Oct;22(10):1094-1100 [PMID: 27595324]
  52. PLoS One. 2010 Dec 22;5(12):e15667 [PMID: 21203517]
  53. Antimicrob Agents Chemother. 2011 Apr;55(4):1527-32 [PMID: 21282447]
  54. Infect Immun. 2013 Aug;81(8):2909-19 [PMID: 23716617]
  55. Nat Med. 2015 Oct;21(10):1223-7 [PMID: 26343800]
  56. J Med Microbiol. 2002 Jan;51(1):42-9 [PMID: 11800471]
  57. Immunol Rev. 2015 Mar;264(1):288-307 [PMID: 25703567]
  58. Antimicrob Agents Chemother. 2012 Jun;56(6):3114-20 [PMID: 22470112]
  59. Bull Int Union Tuberc. 1978 Dec;53(4):276-80 [PMID: 387141]
  60. Am J Respir Crit Care Med. 2006 Nov 15;174(10):1153-8 [PMID: 16908866]
  61. Front Biol. 1979;48:161-94 [PMID: 40832]
  62. J Clin Microbiol. 1991 Nov;29(11):2578-86 [PMID: 1685494]
  63. Nat Microbiol. 2017 May 15;2:17072 [PMID: 28504669]
  64. Infect Immun. 2005 Jan;73(1):546-51 [PMID: 15618194]
  65. MMWR Morb Mortal Wkly Rep. 2003 Aug 8;52(31):735-9 [PMID: 12904741]
  66. Antimicrob Agents Chemother. 2015 Jan;59(1):38-45 [PMID: 25313213]
  67. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  68. J Exp Med. 1966 Mar 1;123(3):445-68 [PMID: 4957010]
  69. Antimicrob Agents Chemother. 2017 Aug 24;61(9):null [PMID: 28696241]
  70. Infect Immun. 2009 Oct;77(10):4631-42 [PMID: 19620341]
  71. Nat Med. 2005 Jun;11(6):638-44 [PMID: 15895072]
  72. Clin Pharmacol Ther. 2017 Aug;102(2):321-331 [PMID: 28124478]
  73. ACS Infect Dis. 2015 May 8;1(5):203-214 [PMID: 26086040]
  74. Am J Respir Crit Care Med. 2003 May 15;167(10):1348-54 [PMID: 12519740]
  75. Front Biosci. 2004 May 01;9:1059-72 [PMID: 14977529]

Grants

  1. R01 AI106398/NIAID NIH HHS
  2. R01 AI111967/NIAID NIH HHS
  3. S10 OD018072/NIH HHS

MeSH Term

Animals
Antitubercular Agents
Disease Models, Animal
Female
Humans
Microbial Viability
Mycobacterium tuberculosis
Necrosis
Neutrophils
Pyrazinamide
Rabbits
Tuberculosis

Chemicals

Antitubercular Agents
Pyrazinamide

Word Cloud

Created with Highcharts 10.0.0PZATBfirstlesionpyrazinamidedrug2moPZA'scontributionefficacydatamodelactivity1970sinclusionregimentuberculosispatientsachieveddrasticreductiontherapydurationnowhowevermechanismsunderlyinguniqueremainedcontroversialanimalvaryacrossspeciesunderstandkillsbacterialpopulationspresentcriticallungcompartmentscharacterizedrabbitactiveshowingstrikingsimilaritiestypesfatesnonhumanprimatemodelsdeemedappropriatesurrogateshumannextemployedlesion-centricmolecularbacteriologyreadoutsdemonstrateexhibitspotentresidingdifficult-to-sterilizenecroticlesionsalsoindicateslowactingsuggestingadministrationbeyondmayacceleratecureconclusionprovidepharmacodynamicexplanationtreatment-shorteningeffectdelivernewtoolsdissectimmuneresponseversuslevelImpactimmunopathologyantituberculous

Similar Articles

Cited By