Small GTPase RAS in multiple sclerosis - exploring the role of RAS GTPase in the etiology of multiple sclerosis.

Samantha Messina
Author Information
  1. Samantha Messina: Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino , Italy.

Abstract

RAS: signaling is involved in the development of autoimmunity in general. Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system. It is widely recognized that a reduction of Foxp3+ regulatory T (Treg) cells is an immunological hallmark of MS, but the underlying mechanisms are unclear. In experimental autoimmune models, N-Ras and K-Ras inhibition triggers an anti-inflammatory effect up-regulating, foxp3 elevation, the numbers and the functional suppressive properties of Tregs. Similarly, an increase in natural Tregs number during Experimental Autoimmune Encephalomyelitis (EAE) in -/- mice results in attenuated disease. In humans, only GTPase isoform is involved in mechanism causing tolerance defects in rheumatoid arthritis (RA). T cells from these patients have increased transcription of (but not ). genes are major drivers in human cancers. Consequently, there has been considerable interest in developing anti-RAS inhibitors for cancer treatment. Despite efforts, no anti-RAS therapy has succeeded in the clinic. The major strategy that has so far reached the clinic aimed to inhibit activated Ras indirectly through blocking its post-translational modification and inducing its mis-localization. The disappointing clinical outcome of Farnesyl Transferase Inhibitors (FTIs) in cancers has decreased interest in these drugs. However, FTIs suppress EAE by downregulation of myelin-reactive activated T-lymphocytes and statins are currently studied in clinical trials for MS. However, no pharmacologic approaches to targeting Ras proteins directly have yet succeeded. The therapeutic strategy to recover immune function through the restoration of impaired Tregs function with the mounting evidences regarding in autoimmune mediated disorder (MS, SLE, RA, T1D) suggest as working hypothesis the direct targeting activation using cancer-derived small molecules may be clinically relevant.
ABBREVIATIONS: FTIs: Farnesyl Transferase Inhibitors; MS: Multiple Sclerosis; RRMS: Relapsing Remitting Multiple Sclerosis; PPMS: Primary Progressive Multiple Sclerosis; Tregs: regulatory T-cells; Foxp3: Forkhead box P3; EAE: Experimental Autoimmune Encephalomyelitis; T1D: Type 1 Diabete; SLE: Systemic Lupus Erythematosus; RA: Rheumatoid Arthritis; CNS: Central Nervous System; TMEV: Theiler's murine encephalomyelitis virus; FTS: farnesyl thiosalicylic acid; TCR: T-Cell Receptor; AIA: Adjuvant-induced Arthritis; EAN: experimental autoimmune neuritis; HVR: hypervariable region; HMG-CoA: 3-hydroxy-3-methylglutaryl coenzyme A reductase; PBMC: Peripheral Blood Mononuclear Cells.

Keywords

References

  1. J Exp Med. 1990 Jan 1;171(1):141-57 [PMID: 2136906]
  2. Proc Natl Acad Sci U S A. 2007 May 22;104(21):8953-8 [PMID: 17517660]
  3. Open Rheumatol J. 2012;6:259-72 [PMID: 23028410]
  4. Blood. 2011 May 12;117(19):5102-11 [PMID: 21444916]
  5. Cell Cycle. 2008 May 15;7(10):1332-5 [PMID: 18418066]
  6. Eur J Pharmacol. 2010 Sep 15;643(1):139-44 [PMID: 20599916]
  7. Cancer Immunol Res. 2016 Apr;4(4):354-65 [PMID: 26880715]
  8. J Immunol. 2007 Oct 1;179(7):4890-900 [PMID: 17878389]
  9. Nat Immunol. 2010 Jan;11(1):7-13 [PMID: 20016504]
  10. J Immunol. 2002 Nov 1;169(9):4712-6 [PMID: 12391178]
  11. Nat Immunol. 2006 Nov;7(11):1166-73 [PMID: 17028589]
  12. Nat Rev Drug Discov. 2016 Nov;15(11):771-785 [PMID: 27469033]
  13. Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):E1629-37 [PMID: 22615393]
  14. Nat Rev Immunol. 2015 Sep 15;15(9):545-58 [PMID: 26250739]
  15. Crit Rev Immunol. 2015;35(6):479-503 [PMID: 27279045]
  16. Eur J Immunol. 2010 Dec;40(12):3403-12 [PMID: 21108463]
  17. Immunity. 2016 Feb 16;44(2):406-21 [PMID: 26885861]
  18. Mol Pharmacol. 2008 May;73(5):1381-93 [PMID: 18239032]
  19. Semin Immunopathol. 2015 Nov;37(6):625-38 [PMID: 26223505]
  20. J Exp Med. 2013 Jul 1;210(7):1463-79 [PMID: 23776078]
  21. Nat Neurosci. 2017 May;20(5):674-680 [PMID: 28288125]
  22. Immunology. 2009 Jan;126(1):92-101 [PMID: 18624727]
  23. Oncogene. 1997 Sep 4;15(10):1151-9 [PMID: 9294608]
  24. Curr Opin Immunol. 2000 Jun;12(3):289-94 [PMID: 10781411]
  25. Nat Rev Immunol. 2009 Jun;9(6):440-7 [PMID: 19444308]
  26. Small GTPases. 2012 Jul-Sep;3(3):139-53 [PMID: 22751447]
  27. Oncotarget. 2012 Feb;3(2):144-57 [PMID: 22323550]
  28. J Immunol. 2007 Aug 15;179(4):2143-52 [PMID: 17675473]
  29. Nat Rev Drug Discov. 2014 Nov;13(11):828-51 [PMID: 25323927]
  30. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5299-304 [PMID: 22431598]
  31. Eur J Immunol. 2008 Jun;38(6):1493-502 [PMID: 18461565]
  32. J Neuroimmunol. 2012 Aug 15;249(1-2):76-82 [PMID: 22608884]
  33. J Immunol. 2009 Dec 15;183(12):8258-67 [PMID: 20007589]
  34. J Immunol. 2008 May 1;180(9):6411-20 [PMID: 18424765]
  35. Genes Dev. 1997 Oct 1;11(19):2468-81 [PMID: 9334313]
  36. Inflammopharmacology. 2015 Dec;23(6):343-54 [PMID: 26559850]
  37. Sci Signal. 2017 Sep 26;10(498): [PMID: 28951536]
  38. Annu Rev Immunol. 2003;21:305-34 [PMID: 12471050]
  39. J Biol Chem. 2005 Oct 7;280(40):34202-9 [PMID: 16085653]
  40. Mol Cell Biol. 2001 Nov;21(21):7345-54 [PMID: 11585916]
  41. Cell. 2015 Nov 19;163(5):1237-1251 [PMID: 26590425]
  42. Lancet Neurol. 2017 Aug;16(8):591-600 [PMID: 28600189]
  43. Mult Scler. 2016 Aug;22(9):1163-73 [PMID: 26466947]
  44. Cell. 2008 May 30;133(5):775-87 [PMID: 18510923]
  45. BioDrugs. 2017 Aug;31(4):335-347 [PMID: 28540499]
  46. Sci Transl Med. 2015 Sep 9;7(304):304ps18 [PMID: 26355029]
  47. J Neuroimmunol. 2005 Nov;168(1-2):46-55 [PMID: 16154640]
  48. J Neuroimmunol. 2001 Nov 1;120(1-2):1-9 [PMID: 11694313]
  49. Front Immunol. 2015 Aug 31;6:438 [PMID: 26379673]
  50. Eur J Pharmacol. 2009 Aug 15;616(1-3):301-5 [PMID: 19527709]
  51. J Neuroinflammation. 2014 Feb 06;11:29 [PMID: 24498870]
  52. Oncogene. 2010 Nov 4;29(44):5911-22 [PMID: 20802526]
  53. Clin Exp Immunol. 2001 Dec;126(3):570-7 [PMID: 11737078]
  54. Angew Chem Int Ed Engl. 2012 Jun 18;51(25):6140-3 [PMID: 22566140]
  55. Science. 1996 Mar 1;271(5253):1276-8 [PMID: 8638108]
  56. Sci Rep. 2018 Jan 11;8(1):420 [PMID: 29323143]
  57. Nat Med. 2011 Jun;17(6):673-5 [PMID: 21540856]
  58. Clin Immunol. 2007 Dec;125(3):215-23 [PMID: 17913587]
  59. Immunol Rev. 2003 Apr;192:122-30 [PMID: 12670400]
  60. J Neuroimmunol. 2010 Dec 15;229(1-2):192-203 [PMID: 20869125]
  61. Clin Immunol. 2003 Jan;106(1):41-9 [PMID: 12584050]
  62. Lancet Neurol. 2015 Apr;14(4):406-19 [PMID: 25792099]
  63. Semin Cancer Biol. 2019 Jun;56:128-134 [PMID: 29100957]
  64. Lancet. 2016 Mar 12;387(10023):1075-1084 [PMID: 26827074]
  65. Cancer Discov. 2016 Mar;6(3):316-29 [PMID: 26739882]
  66. Clin Cancer Res. 2015 Apr 15;21(8):1797-801 [PMID: 25878360]
  67. Mol Cell. 2006 Feb 17;21(4):481-93 [PMID: 16483930]
  68. Nat Rev Immunol. 2010 Dec;10(12):849-59 [PMID: 21107346]
  69. Trends Mol Med. 2010 Feb;16(2):58-68 [PMID: 20159585]
  70. J Immunol. 2014 Jun 1;192(11):5109-17 [PMID: 24771856]
  71. J Immunol. 1995 Aug 1;155(3):1151-64 [PMID: 7636184]
  72. Nat Med. 2014 Jan;20(1):69-74 [PMID: 24317118]
  73. Nat Rev Immunol. 2017 Jan;17(1):49-59 [PMID: 27916979]
  74. Nature. 2013 Nov 28;503(7477):548-51 [PMID: 24256730]
  75. Immunology. 2008 Jan;123(1):79-89 [PMID: 17897326]
  76. CNS Drugs. 2015 Apr;29(4):277-91 [PMID: 25795002]
  77. Annu Rev Immunol. 2004;22:531-62 [PMID: 15032588]
  78. Blood. 2011 Mar 10;117(10):2887-90 [PMID: 21063026]

MeSH Term

Animals
Humans
Monomeric GTP-Binding Proteins
Multiple Sclerosis
ras Proteins

Chemicals

Monomeric GTP-Binding Proteins
ras Proteins

Word Cloud

Created with Highcharts 10.0.0MultiplesclerosisMSautoimmuneTTregsEAEGTPaseFTIsSclerosismultipleinvolveddiseasecellsexperimentalExperimentalAutoimmuneEncephalomyelitisRAmajorcancersinterestanti-RASsucceededclinicstrategyactivatedRasclinicalFarnesylTransferaseInhibitorsHoweverstatinstargetingfunctionArthritisRASRAS:signalingdevelopmentautoimmunitygeneralcell-mediatedcentralnervoussystemwidelyrecognizedreductionFoxp3+ regulatoryTregimmunologicalhallmarkunderlyingmechanismsunclearmodelsN-RasK-Rasinhibitiontriggersanti-inflammatoryeffectup-regulatingfoxp3elevationnumbersfunctionalsuppressivepropertiesSimilarlyincreasenaturalnumber-/-miceresultsattenuatedhumansisoformmechanismcausingtolerancedefectsrheumatoidarthritispatientsincreasedtranscriptiongenesdrivershumanConsequentlyconsiderabledevelopinginhibitorscancertreatmentDespiteeffortstherapyfarreachedaimedinhibitindirectlyblockingpost-translationalmodificationinducingmis-localizationdisappointingoutcomedecreaseddrugssuppressdownregulationmyelin-reactiveT-lymphocytescurrentlystudiedtrialspharmacologicapproachesproteinsdirectlyyettherapeuticrecoverimmunerestorationimpairedmountingevidencesregardingmediateddisorderSLET1Dsuggestworkinghypothesisdirectactivationusingcancer-derivedsmallmoleculesmayclinicallyrelevantABBREVIATIONS:FTIs:MS:RRMS:RelapsingRemittingPPMS:PrimaryProgressiveTregs:regulatoryT-cellsFoxp3:ForkheadboxP3EAE:T1D:Type1DiabeteSLE:SystemicLupusErythematosusRA:RheumatoidCNS:CentralNervousSystemTMEV:Theiler'smurineencephalomyelitisvirusFTS:farnesylthiosalicylicacidTCR:T-CellReceptorAIA:Adjuvant-inducedEAN:neuritisHVR:hypervariableregionHMG-CoA:3-hydroxy-3-methylglutarylcoenzymereductasePBMC:PeripheralBloodMononuclearCellsSmall-exploringroleetiologyHRASKRASNRASRegulatoryT-cell

Similar Articles

Cited By (3)