Multidirectional Activity Control of Cellular Processes by a Versatile Chemo-optogenetic Approach.
Xi Chen, Muthukumaran Venkatachalapathy, Leif Dehmelt, Yao-Wen Wu
Author Information
Xi Chen: Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany.
Muthukumaran Venkatachalapathy: Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
Leif Dehmelt: Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
Yao-Wen Wu: Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227, Dortmund, Germany. ORCID
中文译文
English
The spatiotemporal dynamics of proteins or organelles plays a vital role in controlling diverse cellular processes. However, acute control of activity at distinct locations within a cell is challenging. A versatile multidirectional activity control (MAC) approach is presented, which employs a photoactivatable system that may be dimerized upon chemical inducement. The system comprises second-generation SLF*-TMP (S*T) and photocaged NvocTMP-Cl dimerizers; where, SLF*-TMP features a synthetic ligand of the FKBP(F36V) binding protein, Nvoc is a caging group, and TMP is the antibiotic trimethoprim. Two MAC strategies are demonstrated to spatiotemporally control cellular signaling and intracellular cargo transport. The novel platform enables tunable, reversible, and rapid control of activity at multiple compartments in living cells.
Dev Cell. 2015 Feb 9;32(3):318-34
[PMID: 25640224 ]
Angew Chem Int Ed Engl. 2017 May 15;56(21):5916-5920
[PMID: 28370940 ]
Pflugers Arch. 2013 Mar;465(3):409-17
[PMID: 23299847 ]
Chem Rev. 2010 Jun 9;110(6):3315-36
[PMID: 20353181 ]
Angew Chem Int Ed Engl. 2018 Sep 10;57(37):11993-11997
[PMID: 30048030 ]
Nat Rev Mol Cell Biol. 2012 Dec;13(12):767-79
[PMID: 23151663 ]
FEBS Lett. 2012 Jul 16;586(15):2097-105
[PMID: 22584056 ]
Trends Cell Biol. 2016 Feb;26(2):121-134
[PMID: 26541125 ]
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4609-14
[PMID: 18347340 ]
Curr Opin Cell Biol. 2016 Apr;39:53-60
[PMID: 26921695 ]
Annu Rev Neurosci. 2008;31:151-73
[PMID: 18558852 ]
Cell. 2014 Apr 10;157(2):459-471
[PMID: 24725411 ]
Curr Opin Cell Biol. 2014 Oct;30:112-20
[PMID: 25216352 ]
ACS Chem Biol. 2012 Dec 21;7(12):1950-5
[PMID: 22999378 ]
Nature. 2009 Sep 3;461(7260):104-8
[PMID: 19693014 ]
Curr Biol. 2010 Apr 27;20(8):697-702
[PMID: 20399099 ]
Nat Rev Mol Cell Biol. 2014 Aug;15(8):551-8
[PMID: 25027655 ]
Dev Cell. 2009 Jul;17(1):9-26
[PMID: 19619488 ]
Nature. 2015 Feb 5;518(7537):111-114
[PMID: 25561173 ]
Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6796-6799
[PMID: 29637703 ]
Angew Chem Int Ed Engl. 2018 Mar 5;57(11):2768-2798
[PMID: 28521066 ]
Mol Biosyst. 2009 Apr;5(4):345-50
[PMID: 19396370 ]
Nat Rev Drug Discov. 2009 Dec;8(12):935-48
[PMID: 19949400 ]
Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10049-55
[PMID: 25065762 ]
Nat Rev Mol Cell Biol. 2014 Sep;15(9):615-28
[PMID: 25118718 ]
Curr Opin Chem Biol. 2015 Oct;28:194-201
[PMID: 26431673 ]
J Cell Sci. 2011 Oct 15;124(Pt 20):3381-92
[PMID: 22010196 ]
ChemBioAP/European Research Council
Dimerization
HeLa Cells
Humans
Ligands
Light
Microscopy, Confocal
Optogenetics
Peroxisomes
Tacrolimus Binding Proteins
Trimethoprim
rac1 GTP-Binding Protein
Ligands
RAC1 protein, human
Trimethoprim
rac1 GTP-Binding Protein
Tacrolimus Binding Proteins