Single cell protein analysis for systems biology.

Ezra Levy, Nikolai Slavov
Author Information
  1. Ezra Levy: Department of Biology, Northeastern University, Boston, MA 02115, U.S.A.
  2. Nikolai Slavov: Department of Biology, Northeastern University, Boston, MA 02115, U.S.A. n.slavov@neu.edu.

Abstract

The cellular abundance of proteins can vary even between isogenic single cells. This variability between single-cell protein levels can have regulatory roles, such as controlling cell fate during apoptosis induction or the proliferation/quiescence decision. Here, we review examples connecting protein levels and their dynamics in single cells to cellular functions. Such findings were made possible by the introduction of antibodies, and subsequently fluorescent proteins, for tracking protein levels in single cells. However, in heterogeneous cell populations, such as tumors or differentiating stem cells, cellular decisions are controlled by hundreds, even thousands of proteins acting in concert. Characterizing such complex systems demands measurements of thousands of proteins across thousands of single cells. This demand has inspired the development of new methods for single-cell protein analysis, and we discuss their trade-offs, with an emphasis on their specificity and coverage. We finish by highlighting the potential of emerging mass-spec methods to enable systems-level measurement of single-cell proteomes with unprecedented coverage and specificity. Combining such methods with methods for quantitating the transcriptomes and metabolomes of single cells will provide essential data for advancing quantitative systems biology.

Keywords

References

  1. Nature. 2010 Sep 9;467(7312):167-73 [PMID: 20829787]
  2. Mass Spectrom Rev. 2006 Jan-Feb;25(1):77-98 [PMID: 15937922]
  3. Cell. 2013 Oct 10;155(2):369-83 [PMID: 24075009]
  4. PLoS One. 2014 Apr 22;9(4):e95192 [PMID: 24755770]
  5. Nat Genet. 2004 Feb;36(2):147-50 [PMID: 14730303]
  6. EMBO Rep. 2015 Mar;16(3):387-95 [PMID: 25643707]
  7. Nat Biotechnol. 2017 Oct;35(10):936-939 [PMID: 28854175]
  8. Science. 2017 Oct 6;358(6359):58-63 [PMID: 28983043]
  9. Nat Methods. 2005 Dec;2(12):905-9 [PMID: 16299475]
  10. Angew Chem Int Ed Engl. 2016 Sep 26;55(40):12431-5 [PMID: 27595864]
  11. Mol Cell Proteomics. 2019 Jan;18(1):162-168 [PMID: 30282776]
  12. Nat Methods. 2017 Sep;14(9):865-868 [PMID: 28759029]
  13. Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):553-66 [PMID: 16590055]
  14. Sci Rep. 2017 Mar 14;7:44447 [PMID: 28290550]
  15. Cytometry A. 2010 May;77(5):410-9 [PMID: 20099249]
  16. Nat Genet. 2002 May;31(1):69-73 [PMID: 11967532]
  17. Anal Chem. 2009 Aug 15;81(16):6813-22 [PMID: 19601617]
  18. Nature. 2003 Mar 13;422(6928):198-207 [PMID: 12634793]
  19. Nucleic Acids Res. 2014 Aug;42(14):8845-60 [PMID: 25053837]
  20. MAbs. 2011 Jul-Aug;3(4):376-86 [PMID: 21540647]
  21. Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14019-26 [PMID: 25228775]
  22. Nat Methods. 2014 Jul;11(7):749-55 [PMID: 24880876]
  23. Genome Biol. 2018 Oct 22;19(1):161 [PMID: 30343672]
  24. Science. 2012 Jun 15;336(6087):1440-4 [PMID: 22700930]
  25. Nucleic Acids Res. 2011 Aug;39(15):e102 [PMID: 21646338]
  26. Science. 1976 Oct 8;194(4261):156-61 [PMID: 959843]
  27. Science. 2013 Dec 6;342(6163):1193-200 [PMID: 24311681]
  28. Science. 2012 Apr 13;336(6078):183-7 [PMID: 22499939]
  29. Genetics. 2004 May;167(1):523-30 [PMID: 15166174]
  30. Nat Commun. 2018 Feb 28;9(1):882 [PMID: 29491378]
  31. Science. 2004 Jun 18;304(5678):1811-4 [PMID: 15166317]
  32. Trends Genet. 2017 Feb;33(2):155-168 [PMID: 28089370]
  33. ACS Chem Neurosci. 2013 Apr 17;4(4):601-12 [PMID: 23384199]
  34. Cell Rep. 2014 May 8;7(3):705-14 [PMID: 24767987]
  35. Annu Rev Cell Dev Biol. 2009;25:301-27 [PMID: 19575655]
  36. Mol Cell Proteomics. 2015 Jun;14(6):1672-83 [PMID: 25755294]
  37. Curr Opin Biotechnol. 2013 Feb;24(1):95-104 [PMID: 23246232]
  38. Trends Biotechnol. 2000 Apr;18(4):151-60 [PMID: 10740261]
  39. Anal Chem. 1997 Dec 1;69(23):4751-60 [PMID: 9406525]
  40. Cell. 2018 Feb 22;172(5):910-923.e16 [PMID: 29474919]
  41. Biostatistics. 2018 Oct 1;19(4):562-578 [PMID: 29121214]
  42. Genes Dev. 1997 Oct 1;11(19):2522-31 [PMID: 9334317]
  43. Science. 2011 May 6;332(6030):687-96 [PMID: 21551058]
  44. Science. 2002 Aug 16;297(5584):1183-6 [PMID: 12183631]
  45. Angew Chem Int Ed Engl. 2016 Feb 12;55(7):2454-8 [PMID: 26756663]
  46. Science. 1994 Feb 11;263(5148):802-5 [PMID: 8303295]
  47. Sci Transl Med. 2014 Jan 15;6(219):219ra9 [PMID: 24431113]
  48. Nature. 2009 May 21;459(7245):428-32 [PMID: 19363473]
  49. Mol Cell. 2012 Feb 24;45(4):483-93 [PMID: 22365828]
  50. Nat Rev Cancer. 2017 Jun 23;17(7):399-414 [PMID: 28642603]
  51. Cell Rep. 2017 Jun 13;19(11):2396-2409 [PMID: 28614723]
  52. Cell. 2008 Oct 17;135(2):216-26 [PMID: 18957198]
  53. J Bacteriol. 1945 Aug;50:131-5 [PMID: 20989330]
  54. Methods Mol Biol. 2017;1575:175-187 [PMID: 28255880]
  55. J Mass Spectrom. 2003 Jul;38(7):699-708 [PMID: 12898649]
  56. Nat Biotechnol. 2003 Dec;21(12):1509-12 [PMID: 14608365]
  57. Nucleic Acids Res. 2010 Jan;38(Database issue):D750-3 [PMID: 19854939]
  58. Nat Methods. 2015 Aug;12(8):725-31 [PMID: 26121405]
  59. Cell Rep. 2016 Jan 12;14(2):380-9 [PMID: 26748716]
  60. J Mol Biol. 1985 Jan 5;181(1):139-43 [PMID: 3884820]
  61. Nature. 1976 Aug 5;262(5568):467-71 [PMID: 958399]
  62. Crit Rev Biotechnol. 2017 Mar;37(2):163-176 [PMID: 26767547]
  63. Nat Methods. 2016 Jul;13(7):557-62 [PMID: 27240257]
  64. Nat Protoc. 2007;2(7):1585-602 [PMID: 17585300]
  65. Nat Methods. 2013 Mar;10(3):186-7 [PMID: 23443629]
  66. Sci Rep. 2017 Jun 19;7(1):3779 [PMID: 28630464]
  67. Anal Chem. 2003 Apr 15;75(8):1895-904 [PMID: 12713048]
  68. Nature. 2017 Jun 15;546(7658):431-435 [PMID: 28607484]
  69. PLoS Comput Biol. 2017 May 8;13(5):e1005535 [PMID: 28481885]
  70. Nat Methods. 2016 Mar;13(3):269-75 [PMID: 26808670]
  71. J Proteome Res. 2018 Aug 3;17(8):2565-2571 [PMID: 29945450]
  72. Cell. 2015 May 21;161(5):1187-1201 [PMID: 26000487]
  73. Mol Cell Proteomics. 2006 Jan;5(1):172-81 [PMID: 16204703]
  74. Science. 2013 Dec 6;342(6163):1243259 [PMID: 24311695]
  75. Mol Cell Proteomics. 2016 Aug;15(8):2616-27 [PMID: 27215607]
  76. Nat Methods. 2009 May;6(5):377-82 [PMID: 19349980]
  77. Cell. 2013 Feb 28;152(5):945-56 [PMID: 23452846]

Grants

  1. DP2 GM123497/NIGMS NIH HHS

MeSH Term

Dietary Proteins
Fluorescence
Humans
Mass Spectrometry
Systems Biology

Chemicals

Dietary Proteins
single cell proteins

Word Cloud

Created with Highcharts 10.0.0singlecellsproteinproteinscellmethodscellularsingle-celllevelsthousandssystemscanevenantibodiesanalysisspecificitycoveragebiologyabundancevaryisogenicvariabilityregulatoryrolescontrollingfateapoptosisinductionproliferation/quiescencedecisionreviewexamplesconnectingdynamicsfunctionsfindingsmadepossibleintroductionsubsequentlyfluorescenttrackingHoweverheterogeneouspopulationstumorsdifferentiatingstemdecisionscontrolledhundredsactingconcertCharacterizingcomplexdemandsmeasurementsacrossdemandinspireddevelopmentnewdiscusstrade-offsemphasisfinishhighlightingpotentialemergingmass-specenablesystems-levelmeasurementproteomesunprecedentedCombiningquantitatingtranscriptomesmetabolomeswillprovideessentialdataadvancingquantitativeSinglegeneexpressionregulationmass-spectrometryproteomics

Similar Articles

Cited By