Simulated Marine Heat Wave Alters Abundance and Structure of Vibrio Populations Associated with the Pacific Oyster Resulting in a Mass Mortality Event.

Timothy J Green, Nachshon Siboni, William L King, Maurizio Labbate, Justin R Seymour, David Raftos
Author Information
  1. Timothy J Green: Department of Biological Sciences, Macquarie University, Sydney, Australia. timothy.green@viu.ca. ORCID
  2. Nachshon Siboni: Climate Change Cluster (C3) Ocean Microbes Group, University of Technology Sydney, Sydney, Australia.
  3. William L King: Climate Change Cluster (C3) Ocean Microbes Group, University of Technology Sydney, Sydney, Australia.
  4. Maurizio Labbate: The School of Life Sciences, University of Technology Sydney, Sydney, Australia.
  5. Justin R Seymour: Climate Change Cluster (C3) Ocean Microbes Group, University of Technology Sydney, Sydney, Australia.
  6. David Raftos: Department of Biological Sciences, Macquarie University, Sydney, Australia.

Abstract

Marine heat waves are predicted to become more frequent and intense due to anthropogenically induced climate change, which will impact global production of seafood. Links between rising seawater temperature and disease have been documented for many aquaculture species, including the Pacific oyster Crassostrea gigas. The oyster harbours a diverse microbial community that may act as a source of opportunistic pathogens during temperature stress. We rapidly raised the seawater temperature from 20 °C to 25 °C resulting in an oyster mortality rate of 77.4%. Under the same temperature conditions and with the addition of antibiotics, the mortality rate was only 4.3%, strongly indicating a role for bacteria in temperature-induced mortality. 16S rRNA amplicon sequencing revealed a change in the oyster microbiome when the temperature was increased to 25 °C, with a notable increase in the proportion of Vibrio sequences. This pattern was confirmed by qPCR, which revealed heat stress increased the abundance of Vibrio harveyi and Vibrio fortis by 324-fold and 10-fold, respectively. Our findings indicate that heat stress-induced mortality of C. gigas coincides with an increase in the abundance of putative bacterial pathogens in the oyster microbiome and highlights the negative consequences of marine heat waves on food production from aquaculture.

Keywords

References

  1. Microsc Res Tech. 2002 Jun 15;57(6):469-76 [PMID: 12112429]
  2. Dis Aquat Organ. 2004 Mar 10;58(2-3):143-50 [PMID: 15109135]
  3. Appl Environ Microbiol. 2004 Jul;70(7):4103-10 [PMID: 15240289]
  4. Dis Aquat Organ. 2004 Nov 23;62(1-2):65-74 [PMID: 15648832]
  5. Biotechnol Bioeng. 2005 Mar 20;89(6):670-9 [PMID: 15696537]
  6. Aquat Toxicol. 2006 Sep 12;79(3):278-87 [PMID: 16887206]
  7. Microb Ecol. 2007 Feb;53(2):187-96 [PMID: 17245611]
  8. Am J Physiol Regul Integr Comp Physiol. 2007 Dec;293(6):R2353-62 [PMID: 17898119]
  9. J Virol Methods. 2008 May;149(2):269-76 [PMID: 18342377]
  10. Infect Immun. 2009 Mar;77(3):1208-15 [PMID: 19139193]
  11. Dis Aquat Organ. 2008 Nov 20;82(2):119-34 [PMID: 19149375]
  12. Int J Syst Evol Microbiol. 2009 Jun;59(Pt 6):1391-6 [PMID: 19502322]
  13. Int J Syst Evol Microbiol. 2010 Jan;60(Pt 1):154-65 [PMID: 19648344]
  14. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  15. Microb Ecol. 2010 May;59(4):787-98 [PMID: 20012275]
  16. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  17. J Invertebr Pathol. 2010 Nov;105(3):289-97 [PMID: 20692263]
  18. Clin Microbiol Rev. 2011 Jan;24(1):174-92 [PMID: 21233511]
  19. Mol Ecol. 2011 Jul;20(14):2942-54 [PMID: 21672066]
  20. ISME J. 2012 Jan;6(1):21-30 [PMID: 21753799]
  21. PLoS One. 2011;6(8):e23142 [PMID: 21829707]
  22. ISME J. 2012 Feb;6(2):298-308 [PMID: 21850055]
  23. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  24. ISME J. 2012 Apr;6(4):835-46 [PMID: 22158392]
  25. Nat Commun. 2012 Feb 28;3:704 [PMID: 22426225]
  26. BMC Genomics. 2012 Jun 18;13:252 [PMID: 22708697]
  27. Ann Rev Mar Sci. 2014;6:249-77 [PMID: 23808894]
  28. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  29. Fish Shellfish Immunol. 2014 Jan;36(1):151-7 [PMID: 24200990]
  30. Food Microbiol. 2014 Apr;38:219-27 [PMID: 24290646]
  31. FEMS Microbiol Ecol. 2014 Apr;88(1):69-83 [PMID: 24325323]
  32. PLoS One. 2014 Apr 11;9(4):e94256 [PMID: 24728233]
  33. J Invertebr Pathol. 2014 Sep;121:78-84 [PMID: 25016160]
  34. ISME J. 2015 Mar;9(3):670-82 [PMID: 25180968]
  35. Appl Environ Microbiol. 2015 Jan;81(1):292-7 [PMID: 25344234]
  36. Dev Comp Immunol. 2015 Apr;49(2):231-8 [PMID: 25482648]
  37. J Invertebr Pathol. 2015 Oct;131:11-31 [PMID: 26210496]
  38. ISME J. 2016 Jun;10(6):1363-72 [PMID: 26636553]
  39. Philos Trans R Soc Lond B Biol Sci. 2016 Mar 5;371(1689): [PMID: 26880838]
  40. Trends Microbiol. 2016 Jul;24(7):568-580 [PMID: 27038736]
  41. Front Microbiol. 2016 Apr 12;7:460 [PMID: 27148171]
  42. Vet Res. 2016 Jul 21;47(1):72 [PMID: 27439510]
  43. PeerJ. 2016 Oct 18;4:e2584 [PMID: 27781170]
  44. Nat Commun. 2017 Jul 14;8:16101 [PMID: 28706247]
  45. Dis Aquat Organ. 2017 Aug 9;125(3):227-242 [PMID: 28792421]
  46. Appl Environ Microbiol. 2018 Apr 16;84(9):null [PMID: 29475863]

Grants

  1. 9201300681/Macquarie University
  2. FT130100218/Australian Research Council
  3. LP160101785/Australian Research Council

MeSH Term

Animals
Aquaculture
Climate Change
Crassostrea
Hot Temperature
Microbiota
Seawater
Vibrio

Word Cloud

Created with Highcharts 10.0.0heattemperatureoysterVibriomortalityMarinestresswaveschangeproductionseawateraquaculturePacificCrassostreagigaspathogens25 °CraterevealedmicrobiomeincreasedincreaseabundanceharveyipredictedbecomefrequentintensedueanthropogenicallyinducedclimatewillimpactglobalseafoodLinksrisingdiseasedocumentedmanyspeciesincludingharboursdiversemicrobialcommunitymayactsourceopportunisticrapidlyraised20 °Cresulting774%conditionsadditionantibiotics43%stronglyindicatingrolebacteriatemperature-induced16SrRNAampliconsequencingnotableproportionsequencespatternconfirmedqPCRfortis324-fold10-foldrespectivelyfindingsindicatestress-inducedCcoincidesputativebacterialhighlightsnegativeconsequencesmarinefoodSimulatedHeatWaveAltersAbundanceStructurePopulationsAssociatedOysterResultingMassMortalityEventDiseaseeventwaveTemperature

Similar Articles

Cited By