Review of global sanitation development.

Xiaoqin Zhou, Zifu Li, Tianlong Zheng, Yichang Yan, Pengyu Li, Emmanuel Alepu Odey, Heinz Peter Mang, Sayed Mohammad Nazim Uddin
Author Information
  1. Xiaoqin Zhou: School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
  2. Zifu Li: School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China. Electronic address: zifulee@aliyun.com.
  3. Tianlong Zheng: State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China. Electronic address: tlzheng@rcees.ac.cn.
  4. Yichang Yan: School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
  5. Pengyu Li: State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.
  6. Emmanuel Alepu Odey: School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
  7. Heinz Peter Mang: School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
  8. Sayed Mohammad Nazim Uddin: Department of Geography, Faculty of Social Sciences, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada.

Abstract

The implementation of the United Nations (UN) Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs) has resulted in an increased focus on developing innovative, sustainable sanitation techniques to address the demand for adequate and equitable sanitation in low-income areas. We examined the background, current situation, challenges, and perspectives of global sanitation. We used bibliometric analysis and word cluster analysis to evaluate sanitation research from 1992 to 2016 based on the Science Citation Index EXPANDED (SCI-EXPANDED) and Social Sciences Citation Index (SSCI) databases. Our results show that sanitation is a comprehensive field connected with multiple categories, and the increasing number of publications reflects a strong interest in this research area. Most of the research took place in developed countries, especially the USA, although sanitation problems are more serious in developing countries. Innovations in sanitation techniques may keep susceptible populations from contracting diseases caused by various kinds of contaminants and microorganisms. Hence, the hygienization of human excreta, resource recovery, and removal of micro-pollutants from excreta can serve as effective sustainable solutions. Commercialized technologies, like composting, anaerobic digestion, and storage, are reliable but still face challenges in addressing the links between the political, social, institutional, cultural, and educational aspects of sanitation. Innovative technologies, such as Microbial Fuel Cells (MFCs), Microbial Electrolysis Cells (MECs), and struvite precipitation, are at the TRL (Technology readiness levels) 8 level, meaning that they qualify as "actual systems completed and qualified through test and demonstration." Solutions that take into consideration economic feasibility and all the different aspects of sanitation are required. There is an urgent demand for holistic solutions considering government support, social acceptability, as well as technological reliability that can be effectively adapted to local conditions.

Keywords

References

  1. Science. 2017 Sep 15;357(6356):1099-1100 [PMID: 28912233]
  2. Environ Sci Technol. 2017 May 2;51(9):5165-5171 [PMID: 28409915]
  3. Lancet. 1997 May 17;349(9063):1436-42 [PMID: 9164317]
  4. Water Res. 2015 Sep 1;80:71-9 [PMID: 25996754]
  5. Chemosphere. 2011 Aug;84(6):832-9 [PMID: 21429554]
  6. Water Res. 2008 Sep;42(15):4067-74 [PMID: 18718625]
  7. Water Sci Technol. 2008;58(8):1555-62 [PMID: 19001707]
  8. PLoS One. 2017 May 2;12(5):e0176475 [PMID: 28463976]
  9. Bioresour Technol. 2018 Feb;249:361-367 [PMID: 29055212]
  10. Water Res. 2016 May 1;94:10-22 [PMID: 26921709]
  11. Environ Sci Pollut Res Int. 2017 Dec;24(35):27613-27630 [PMID: 29134520]
  12. Environ Technol. 2008 Jul;29(7):807-16 [PMID: 18697522]
  13. Biotechnol Biofuels. 2017 Mar 20;10:70 [PMID: 28331546]
  14. Waste Manag. 2015 Jun;40:44-52 [PMID: 25708406]
  15. Bioresour Technol. 2007 Dec;98(17):3317-21 [PMID: 16930998]
  16. Sci Total Environ. 2018 Feb 15;615:262-271 [PMID: 28972902]
  17. Lancet. 2015 Dec 5;386(10010):2287-323 [PMID: 26364544]
  18. J Environ Manage. 2017 Aug 1;198(Pt 1):63-69 [PMID: 28448847]
  19. Waste Manag. 2009 Jul;29(7):2214-9 [PMID: 19303763]
  20. Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16569-72 [PMID: 16275915]
  21. Nature. 2009 Oct 8;461(7265):716-8 [PMID: 19812648]
  22. Phys Chem Chem Phys. 2012 Feb 14;14(6):1978-84 [PMID: 22234416]
  23. Trends Biotechnol. 2015 Apr;33(4):214-20 [PMID: 25746162]
  24. Sci Total Environ. 2015 Jul 1;520:213-21 [PMID: 25817758]
  25. Lancet. 2012 Dec 15;380(9859):2224-60 [PMID: 23245609]
  26. Chemosphere. 2012 Jun;88(2):219-23 [PMID: 22445958]
  27. Environ Technol. 2014 Mar-Apr;35(5-8):674-80 [PMID: 24645447]
  28. J Environ Manage. 2018 Jun 15;216:347-356 [PMID: 28941832]
  29. Waste Manag Res. 2002 Apr;20(2):150-61 [PMID: 12058821]
  30. Waste Manag. 2009 Feb;29(2):585-9 [PMID: 18692381]
  31. J Water Sanit Hyg Dev. 2017 Jun 05;7(3):378-386 [PMID: 33384864]
  32. RSC Adv. 2016;6(48):42240-42248 [PMID: 27672437]
  33. Water Res. 2017 Mar 15;111:330-337 [PMID: 28104519]
  34. Sci Total Environ. 2013 Jan 15;443:757-65 [PMID: 23228721]
  35. Water Res. 2007 Jan;41(2):458-66 [PMID: 17126877]
  36. Appl Microbiol Biotechnol. 2018 Apr;102(8):3453-3473 [PMID: 29497798]
  37. Appl Environ Microbiol. 2013 Apr;79(7):2156-63 [PMID: 23335764]
  38. Intern Med. 2010;49(20):2219-28 [PMID: 20962440]
  39. Scientometrics. 2004;61(1):69-77 [PMID: 32214553]
  40. J Colloid Interface Sci. 2012 Aug 1;379(1):148-56 [PMID: 22608849]
  41. Water Res. 2007 Mar;41(5):977-84 [PMID: 17258264]
  42. Water Sci Technol. 2003;48(1):47-56 [PMID: 12926620]
  43. Water Res. 2013 Oct 15;47(16):6014-23 [PMID: 23941983]
  44. Phys Chem Chem Phys. 2013 Oct 7;15(37):15312-6 [PMID: 23939246]
  45. Water Res. 2006 Oct;40(17):3151-66 [PMID: 16949123]
  46. Water Res. 2015 Oct 15;83:153-60 [PMID: 26143272]
  47. Water Res. 2013 Aug 1;47(12):3931-46 [PMID: 23571110]
  48. Environ Sci (Camb). 2017 Mar 10;3(3):480-491 [PMID: 33408873]
  49. Water Res. 2017 Feb 1;109:46-53 [PMID: 27866103]
  50. Bioresour Technol. 2016 Sep;215:173-185 [PMID: 27053446]

MeSH Term

Humans
Internationality
Research
Sanitation

Word Cloud

Created with Highcharts 10.0.0sanitationanalysisresearchDevelopmentGoalsdevelopingsustainabletechniquesdemandchallengesglobalCitationIndexcountriesexcretacansolutionstechnologiessocialaspectsMicrobialCellsimplementationUnitedNationsUNMillenniumMDGsSustainableSDGsresultedincreasedfocusinnovativeaddressadequateequitablelow-incomeareasexaminedbackgroundcurrentsituationperspectivesusedbibliometricwordclusterevaluate19922016basedScienceEXPANDEDSCI-EXPANDEDSocialSciencesSSCIdatabasesresultsshowcomprehensivefieldconnectedmultiplecategoriesincreasingnumberpublicationsreflectsstronginterestareatookplacedevelopedespeciallyUSAalthoughproblemsseriousInnovationsmaykeepsusceptiblepopulationscontractingdiseasescausedvariouskindscontaminantsmicroorganismsHencehygienizationhumanresourcerecoveryremovalmicro-pollutantsserveeffectiveCommercializedlikecompostinganaerobicdigestionstoragereliablestillfaceaddressinglinkspoliticalinstitutionalculturaleducationalInnovativeFuelMFCsElectrolysisMECsstruviteprecipitationTRLTechnologyreadinesslevels8levelmeaningqualify"actualsystemscompletedqualifiedtestdemonstration"SolutionstakeconsiderationeconomicfeasibilitydifferentrequiredurgentholisticconsideringgovernmentsupportacceptabilitywelltechnologicalreliabilityeffectivelyadaptedlocalconditionsReviewdevelopmentBibliometricChallengesGapsResearchhotspotsSanitation

Similar Articles

Cited By