Estimating Genetic Relatedness in Admixed Populations.

Arun Sethuraman
Author Information
  1. Arun Sethuraman: Department of Biological Sciences, California State University San Marcos, CA 92096 asethuraman@csusm.edu. ORCID

Abstract

Estimating genetic relatedness, and inbreeding coefficients is important to the fields of quantitative genetics, conservation, genome-wide association studies (GWAS), and population genetics. Traditional estimators of genetic relatedness assume an underlying model of population structure. Each individual is assigned to a population, depending on assumptions about geographical location of sampling, proximity, or genetic similarity. But often, this population assignment is unknown and assumptions about assignment can lead to erroneous estimates of genetic relatedness. I develop a generalized method of estimating relatedness in admixed populations, to account for (1) multi-allelic genomic data, (2) including all nine Identity By Descent (IBD) states, and implement a maximum likelihood based estimator of pairwise genetic relatedness in structured populations, part of the software, InRelate. Replicated estimations of genetic relatedness between admixed full sib (FS), half sib (HS), first cousin (FC), parent-offspring (PO) and unrelated (UR) dyads in simulated and empirical data from the HGDP-CEPH panel show considerably low bias and error while using InRelate, compared to several previously developed methods. I also propose a bootstrap scheme, and a series of Wald Tests to assign relatedness categories to pairs of individuals.

Keywords

References

  1. Genetics. 2011 Mar;187(3):887-901 [PMID: 21212234]
  2. Evolution. 1989 Mar;43(2):258-275 [PMID: 28568555]
  3. Science. 2009 May 22;324(5930):1035-44 [PMID: 19407144]
  4. Mol Ecol. 2005 Jul;14(8):2611-20 [PMID: 15969739]
  5. J Hered. 2001 May-Jun;92(3):301-2 [PMID: 11447253]
  6. Genetics. 2007 May;176(1):421-40 [PMID: 17339212]
  7. Mol Ecol Resour. 2011 Jan;11(1):141-5 [PMID: 21429111]
  8. Nat Rev Genet. 2006 Oct;7(10):771-80 [PMID: 16983373]
  9. Am J Hum Genet. 2000 Jul;67(1):170-81 [PMID: 10827107]
  10. Mol Ecol. 2005 Sep;14(10):3157-65 [PMID: 16101781]
  11. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):13956-60 [PMID: 22893688]
  12. PLoS One. 2010 Sep 14;5(9):e12721 [PMID: 20856862]
  13. J Hered. 2001 Mar-Apr;92(2):99-219 [PMID: 11700602]
  14. Annu Rev Genet. 1994;28:597-621 [PMID: 7893141]
  15. Ann Hum Genet. 1983 Jul;47(3):253-9 [PMID: 6614868]
  16. Genetics. 2002 Mar;160(3):1203-15 [PMID: 11901134]
  17. Am J Hum Genet. 2016 Jan 7;98(1):127-48 [PMID: 26748516]
  18. Am J Hum Genet. 1997 Aug;61(2):423-9 [PMID: 9311748]
  19. Ann Hum Genet. 1975 Oct;39(2):173-88 [PMID: 1052764]
  20. Mol Ecol Resour. 2008 Mar;8(2):256-63 [PMID: 21585767]
  21. Nat Rev Genet. 2008 Apr;9(4):255-66 [PMID: 18319743]
  22. Science. 2002 Apr 12;296(5566):261-2 [PMID: 11954565]
  23. Nat Commun. 2018 Aug 14;9(1):3258 [PMID: 30108219]
  24. Mol Ecol Resour. 2009 Sep;9(5):1322-32 [PMID: 21564903]
  25. Hum Hered. 1993 Jan-Feb;43(1):45-52 [PMID: 8514326]
  26. Genetics. 2006 May;173(1):483-96 [PMID: 16510792]
  27. Am J Hum Genet. 2002 Mar;70(3):737-50 [PMID: 11845411]
  28. G3 (Bethesda). 2013 May 20;3(5):891-907 [PMID: 23550135]
  29. Nature. 1950 Aug 12;166(4215):247-9 [PMID: 15439261]
  30. Mol Ecol Resour. 2018 Jan;18(1):41-54 [PMID: 28776944]
  31. Nat Rev Genet. 2010 Oct;11(10):697-709 [PMID: 20847747]
  32. Mol Biol Evol. 1988 Sep;5(5):584-99 [PMID: 3193879]
  33. Am J Hum Genet. 2000 Nov;67(5):1219-31 [PMID: 11032786]
  34. Genetics. 1999 Aug;152(4):1753-66 [PMID: 10430599]
  35. J Forensic Sci. 2004 Sep;49(5):1009-14 [PMID: 15461102]
  36. Genetics. 2017 Sep;207(1):75-82 [PMID: 28739658]
  37. Hum Genomics. 2013 Jan 05;7:1 [PMID: 23289408]
  38. Am J Hum Genet. 2012 Jul 13;91(1):122-38 [PMID: 22748210]
  39. Biometrics. 1972 Dec;28(4):1101-14 [PMID: 4648793]
  40. Science. 2002 Dec 20;298(5602):2381-5 [PMID: 12493913]
  41. Bioinformatics. 2014 Apr 1;30(7):1027-8 [PMID: 24215025]
  42. Genetics. 2003 Mar;163(3):1153-67 [PMID: 12663552]
  43. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  44. Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15942-7 [PMID: 16243969]
  45. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  46. Genome Res. 2009 Sep;19(9):1655-64 [PMID: 19648217]
  47. PLoS Genet. 2005 Dec;1(6):e70 [PMID: 16355252]
  48. Evolution. 1984 Nov;38(6):1358-1370 [PMID: 28563791]
  49. Bioinformatics. 2010 Nov 15;26(22):2867-73 [PMID: 20926424]
  50. Mol Ecol Notes. 2007 Jul 1;7(4):574-578 [PMID: 18784791]
  51. Bioinformatics. 2007 Jul 15;23(14):1801-6 [PMID: 17485429]
  52. Genetics. 2003 Aug;164(4):1567-87 [PMID: 12930761]
  53. Ann Hum Genet. 2006 Nov;70(Pt 6):841-7 [PMID: 17044859]
  54. PLoS Genet. 2006 Dec;2(12):e215 [PMID: 17194221]
  55. Genet Res. 2007 Jun;89(3):135-53 [PMID: 17894908]

MeSH Term

Algorithms
Computer Simulation
Diploidy
Genetic Loci
Genetics, Population
Genotype
Likelihood Functions
Models, Genetic
Models, Statistical
Pedigree

Word Cloud

Created with Highcharts 10.0.0relatednessgeneticpopulationEstimatinggeneticsassumptionsassignmentadmixedpopulationsdataInRelatesibGeneticRelatednessinbreedingcoefficientsimportantfieldsquantitativeconservationgenome-wideassociationstudiesGWASTraditionalestimatorsassumeunderlyingmodelstructureindividualassigneddependinggeographicallocationsamplingproximitysimilarityoftenunknowncanleaderroneousestimatesdevelopgeneralizedmethodestimatingaccount1multi-allelicgenomic2includingnineIdentityDescentIBDstatesimplementmaximumlikelihoodbasedestimatorpairwisestructuredpartsoftwareReplicatedestimationsfullFShalfHSfirstcousinFCparent-offspringPOunrelatedURdyadssimulatedempiricalHGDP-CEPHpanelshowconsiderablylowbiaserrorusingcomparedseveralpreviouslydevelopedmethodsalsoproposebootstrapschemeseriesWaldTestsassigncategoriespairsindividualsAdmixedPopulationsAdmixtureCoancestryPopulationStructure

Similar Articles

Cited By