Increased Adult and (Diptera: Culicidae) Abundance in a Dengue Transmission Hotspot, Compared to a Coldspot, within Kaohsiung City, Taiwan.

Ka-Chon Ng, Luis Fernando Chaves, Kun-Hsien Tsai, Ting-Wu Chuang
Author Information
  1. Ka-Chon Ng: College of Public Health, National Taiwan University, Taipei 10055, Taiwan. chonchonedwin0719@gmail.com.
  2. Luis Fernando Chaves: Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Apartado Postal 4-2250, Tres Ríos, Cartago, Costa Rica. lfchavs@gmail.com. ORCID
  3. Kun-Hsien Tsai: College of Public Health, National Taiwan University, Taipei 10055, Taiwan. kunhtsai@ntu.edu.tw. ORCID
  4. Ting-Wu Chuang: Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei 11031, Taiwan. chtingwu@tmu.edu.tw. ORCID

Abstract

The assumption that vector abundance differences might drive spatial and temporal heterogeneities in vector-borne disease transmission is common, though data supporting it is scarce. Here, we present data from two common mosquito species (Linnaeus) and Say, biweekly sampled as adults, from March 2016 through December 2017, with BG-sentinel traps in two neighboring districts of Kaohsiung City (KC), Taiwan. One district has historically been a dengue transmission hotspot (Sanmin), and the other a coldspot (Nanzih). We collected a total 41,027 mosquitoes, and we found that average mosquito abundance (mean ± S.D.) was higher in Sanmin (: 9.03 ± 1.46; : 142.57 ± 14.38) than Nanzih (: 6.21 ± 0.47; : 63.37 ± 8.71) during the study period. In both districts, and population dynamics were sensitive to changes in temperature, the most platykurtic environmental variable at KC during the study period, a pattern predicted by Schmalhausen's law, which states that organisms are more sensitive to small changes in environmental variables whose average value is more uncertain than its extremes. Our results also suggest that differences in abundance might be responsible for spatial differences in dengue transmission at KC. Our comparative approach, where we also observed a significant increment in the abundance of in the dengue transmission hotspot, suggests this area might be more likely to experience outbreaks of other vector borne diseases and should become a primary focus for vector surveillance and control.

Keywords

References

  1. Int Health. 2013 Dec;5(4):251-8 [PMID: 24225151]
  2. J Am Mosq Control Assoc. 2015 Mar;31(1):26-31 [PMID: 25843173]
  3. PLoS One. 2017 Jun 2;12(6):e0178698 [PMID: 28575035]
  4. PLoS One. 2007 Mar 28;2(3):e331 [PMID: 17396162]
  5. Environ Entomol. 2013 Aug;42(4):614-26 [PMID: 23905724]
  6. Trans R Soc Trop Med Hyg. 2014 Apr;108(4):185-97 [PMID: 24591453]
  7. Am J Trop Med Hyg. 2010 Jul;83(1):126-34 [PMID: 20595491]
  8. J Med Entomol. 2018 Feb 28;55(2):329-341 [PMID: 29228297]
  9. J Am Mosq Control Assoc. 2014 Dec;30(4):260-7 [PMID: 25843131]
  10. J Med Entomol. 2008 Jan;45(1):28-35 [PMID: 18283939]
  11. J Med Entomol. 2017 Mar 1;54(2):329-339 [PMID: 28025246]
  12. PLoS Med. 2005 Apr;2(4):e106 [PMID: 15839751]
  13. Mem Inst Oswaldo Cruz. 2006 May;101(3):321-5 [PMID: 16862330]
  14. J Am Mosq Control Assoc. 2012 Dec;28(4 Suppl):82-91 [PMID: 23401947]
  15. Acta Trop. 2014 Feb;130:17-23 [PMID: 24161880]
  16. J Med Entomol. 1975 Sep 25;12(3):299-308 [PMID: 1181434]
  17. Antiviral Res. 2010 Feb;85(2):328-45 [PMID: 19857523]
  18. Am J Trop Med Hyg. 2009 Aug;81(2):264-72 [PMID: 19635881]
  19. Environ Res. 2016 Nov;151:115-123 [PMID: 27475051]
  20. Nature. 1964 Dec 19;204:1173-5 [PMID: 14268587]
  21. PLoS Negl Trop Dis. 2017 Jan 30;11(1):e0005347 [PMID: 28135281]
  22. Bull Entomol Res. 2015 Oct;105(5):589-97 [PMID: 26074401]
  23. J Med Entomol. 2012 Nov;49(6):1328-38 [PMID: 23270160]
  24. BMC Infect Dis. 2016 Nov 9;16(1):662 [PMID: 27829399]
  25. N Engl J Med. 2015 Mar 26;372(13):1231-9 [PMID: 25806915]
  26. Med Vet Entomol. 2010 Jun;24(2):117-23 [PMID: 20374477]
  27. J Am Mosq Control Assoc. 2008 Sep;24(3):393-7 [PMID: 18939691]
  28. J Am Mosq Control Assoc. 2006 Jun;22(2):229-38 [PMID: 17019768]
  29. PLoS Negl Trop Dis. 2014 Oct 02;8(10):e3210 [PMID: 25275503]
  30. J Med Entomol. 1975 Jun 30;12(2):167-78 [PMID: 1159738]
  31. Acta Trop. 2014 Jan;129:15-24 [PMID: 23537497]
  32. PLoS One. 2017 Sep 22;12(9):e0185491 [PMID: 28937995]
  33. PLoS Negl Trop Dis. 2017 Mar 23;11(3):e0005429 [PMID: 28333938]
  34. J Med Entomol. 1993 Nov;30(6):1003-17 [PMID: 8271242]
  35. Am J Trop Med Hyg. 1987 Jan;36(1):143-52 [PMID: 3812879]
  36. Cell Microbiol. 2017 Jun;19(6): [PMID: 28370966]
  37. J Am Mosq Control Assoc. 1999 Jun;15(2):105-14 [PMID: 10412106]
  38. J Am Mosq Control Assoc. 2006 Sep;22(3):358-65 [PMID: 17067032]
  39. PLoS Negl Trop Dis. 2007 Oct 22;1(1):e33 [PMID: 17989780]
  40. Environ Entomol. 2018 Feb 8;47(1):148-158 [PMID: 29293910]
  41. J Med Entomol. 2000 Jan;37(1):89-101 [PMID: 15218911]
  42. J Med Entomol. 2009 Nov;46(6):1519-31 [PMID: 19960707]
  43. J Med Entomol. 2016 Jul;53(4):935-944 [PMID: 27113111]
  44. J Med Entomol. 2017 May 1;54(3):533-543 [PMID: 28399270]
  45. J Med Entomol. 2010 Mar;47(2):230-7 [PMID: 20380305]
  46. Environ Health Perspect. 2016 Sep;124(9):1369-75 [PMID: 26662617]
  47. Parasit Vectors. 2010 Mar 19;3(1):19 [PMID: 20302617]
  48. Mem Inst Oswaldo Cruz. 2014 Dec;109(8):1030-40 [PMID: 25494470]
  49. PLoS Negl Trop Dis. 2010 Jul 13;4(7):e747 [PMID: 20644621]
  50. J Med Entomol. 2017 Jul 1;54(4):854-861 [PMID: 28399263]
  51. Am J Trop Med Hyg. 2016 Jan;94(1):193-7 [PMID: 26572871]
  52. Annu Rev Entomol. 2010;55:461-83 [PMID: 19737082]
  53. Ann Entomol Soc Am. 1970 Jul;63(4):995-9 [PMID: 5449406]
  54. Int J Biometeorol. 2016 Nov;60(11):1727-1738 [PMID: 27039106]
  55. PLoS Med. 2009 Nov;6(11):e1000168 [PMID: 19918363]
  56. Bull Entomol Res. 2011 Dec;101(6):633-41 [PMID: 21208506]
  57. BMC Ecol. 2014 Feb 05;14:3 [PMID: 24495345]
  58. J Med Entomol. 2009 Jul;46(4):919-25 [PMID: 19645298]
  59. Am J Trop Med Hyg. 2005 Feb;72(2):209-20 [PMID: 15741559]
  60. J Med Entomol. 2018 May 4;55(3):646-653 [PMID: 29390141]
  61. Parasite Epidemiol Control. 2016 Mar 18;1(2):42-55 [PMID: 29988197]
  62. J Med Entomol. 2000 Jan;37(1):77-88 [PMID: 15218910]
  63. J Med Entomol. 2006 Mar;43(2):309-17 [PMID: 16619616]
  64. Trends Microbiol. 2014 Mar;22(3):138-46 [PMID: 24468533]
  65. Emerg Microbes Infect. 2016 Dec 7;5(12):e123 [PMID: 27924810]
  66. Philos Trans R Soc Lond B Biol Sci. 2015 Apr 5;370(1665):null [PMID: 25688023]
  67. J Med Entomol. 1998 Jul;35(4):578-83 [PMID: 9701948]
  68. J Med Entomol. 1989 Jan;26(1):10-22 [PMID: 2926773]
  69. Parasit Vectors. 2016 Aug 12;9(1):446 [PMID: 27519419]
  70. J Med Entomol. 2017 Nov 7;54(6):1605-1614 [PMID: 29029153]
  71. Sci Rep. 2016 Oct 13;6:35028 [PMID: 27733774]
  72. J Med Entomol. 1992 May;29(3):531-43 [PMID: 1625303]
  73. BMC Public Health. 2007 Jun 08;7:101 [PMID: 17559638]
  74. Environ Entomol. 2013 Aug;42(4):605-13 [PMID: 23905723]
  75. J Med Entomol. 1990 Sep;27(5):892-8 [PMID: 2231624]
  76. J Am Mosq Control Assoc. 1993 Jun;9(2):189-95 [PMID: 8350076]
  77. PLoS Negl Trop Dis. 2012;6(10):e1848 [PMID: 23110242]
  78. N Engl J Med. 2012 Apr 12;366(15):1423-32 [PMID: 22494122]
  79. Q Rev Biol. 2010 Mar;85(1):27-55 [PMID: 20337259]

Word Cloud

Created with Highcharts 10.0.0±abundancetransmission:vectordifferencesmightKCdenguespatialcommondatatwomosquitodistrictsKaohsiungCityTaiwanhotspotSanminNanzihaveragestudyperiodsensitivechangesenvironmentallawalsooutbreaksassumptiondrivetemporalheterogeneitiesvector-bornediseasethoughsupportingscarcepresentspeciesLinnaeusSaybiweeklysampledadultsMarch2016December2017BG-sentineltrapsneighboringOnedistricthistoricallycoldspotcollectedtotal41027mosquitoesfoundmeanSDhigher9031461425714386210476337871populationdynamicstemperatureplatykurticvariablepatternpredictedSchmalhausen'sstatesorganismssmallvariableswhosevalueuncertainextremesresultssuggestresponsiblecomparativeapproachobservedsignificantincrementsuggestsarealikelyexperiencebornediseasesbecomeprimaryfocussurveillancecontrolIncreasedAdultDiptera:CulicidaeAbundanceDengueTransmissionHotspotComparedColdspotwithinSchmalhausen’skurtosispesttimeseriesanalysisweathervariability

Similar Articles

Cited By