Simulating Developmental Cardiac Morphology in Virtual Reality Using a Deformable Image Registration Approach.

Arash Abiri, Yichen Ding, Parinaz Abiri, René R Sevag Packard, Vijay Vedula, Alison Marsden, C-C Jay Kuo, Tzung K Hsiai
Author Information
  1. Arash Abiri: Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
  2. Yichen Ding: Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
  3. Parinaz Abiri: Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
  4. René R Sevag Packard: Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
  5. Vijay Vedula: Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA.
  6. Alison Marsden: Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA.
  7. C-C Jay Kuo: Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
  8. Tzung K Hsiai: Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA. THsiai@mednet.ucla.edu.

Abstract

While virtual reality (VR) has potential in enhancing cardiovascular diagnosis and treatment, prerequisite labor-intensive image segmentation remains an obstacle for seamlessly simulating 4-dimensional (4-D, 3-D + time) imaging data in an immersive, physiological VR environment. We applied deformable image registration (DIR) in conjunction with 3-D reconstruction and VR implementation to recapitulate developmental cardiac contractile function from light-sheet fluorescence microscopy (LSFM). This method addressed inconsistencies that would arise from independent segmentations of time-dependent data, thereby enabling the creation of a VR environment that fluently simulates cardiac morphological changes. By analyzing myocardial deformation at high spatiotemporal resolution, we interfaced quantitative computations with 4-D VR. We demonstrated that our LSFM-captured images, followed by DIR, yielded average dice similarity coefficients of 0.92 ± 0.05 (n = 510) and 0.93 ± 0.06 (n = 240) when compared to ground truth images obtained from Otsu thresholding and manual segmentation, respectively. The resulting VR environment simulates a wide-angle zoomed-in view of motion in live embryonic zebrafish hearts, in which the cardiac chambers are undergoing structural deformation throughout the cardiac cycle. Thus, this technique allows for an interactive micro-scale VR visualization of developmental cardiac morphology to enable high resolution simulation for both basic and clinical science.

Keywords

References

  1. Surg Endosc. 2017 Aug;31(8):3271-3278 [PMID: 27924387]
  2. Semin Radiat Oncol. 2010 Apr;20(2):79-83 [PMID: 20219545]
  3. Comput Med Imaging Graph. 1995 Jan-Feb;19(1):69-83 [PMID: 7736420]
  4. IEEE Trans Med Imaging. 2000 Feb;19(2):94-102 [PMID: 10784281]
  5. Curr Cardiol Rep. 2018 Mar 24;20(5):35 [PMID: 29574550]
  6. Interact Cardiovasc Thorac Surg. 2007 Oct;6(5):603-7 [PMID: 17670733]
  7. Med Phys. 2005 Apr;32(4):890-901 [PMID: 15895571]
  8. Med Phys. 2005 Jun;32(6):1647-59 [PMID: 16013724]
  9. Science. 2004 Aug 13;305(5686):1007-9 [PMID: 15310904]
  10. Nat Methods. 2007 Apr;4(4):311-3 [PMID: 17339847]
  11. Med Image Anal. 2011 Apr;15(2):238-49 [PMID: 21075672]
  12. IEEE Trans Pattern Anal Mach Intell. 2014 Jan;36(1):171-80 [PMID: 24231874]
  13. Sci Rep. 2017 Aug 17;7(1):8603 [PMID: 28819303]
  14. Nat Methods. 2017 Mar 31;14(4):360-373 [PMID: 28362435]
  15. J Comput Assist Tomogr. 1996 Nov-Dec;20(6):1012-22 [PMID: 8933812]
  16. Acad Radiol. 2004 Feb;11(2):178-89 [PMID: 14974593]
  17. Int J Med Robot. 2017 Jun;13(2): [PMID: 27439562]
  18. Nat Methods. 2011 May;8(5):417-23 [PMID: 21378978]
  19. Methods Inf Med. 2003;42(5):524-34 [PMID: 14654887]
  20. Nat Biotechnol. 2010 Apr;28(4):348-53 [PMID: 20231818]
  21. Phys Med Biol. 2010 Jan 7;55(1):207-19 [PMID: 20009197]
  22. Med Image Anal. 1998 Sep;2(3):243-60 [PMID: 9873902]
  23. Technol Cancer Res Treat. 2008 Feb;7(1):67-81 [PMID: 18198927]
  24. J Nucl Med. 2014 Aug;55(8):1375-9 [PMID: 24947062]
  25. Nat Commun. 2014 Jul 11;5:4342 [PMID: 25014658]
  26. Neurosurgery. 2007 Jul;61(1):142-8; discussion 148-9 [PMID: 17621029]
  27. IEEE Trans Med Imaging. 2002 Sep;21(9):1167-78 [PMID: 12564884]
  28. Methods Inf Med. 2009;48(1):11-7 [PMID: 19151879]
  29. Int J Radiat Oncol Biol Phys. 2006 Mar 15;64(4):1245-54 [PMID: 16442239]
  30. Opt Express. 2002 Jan 28;10(2):145-54 [PMID: 19424342]
  31. J Biophotonics. 2015 Jan;8(1-2):94-101 [PMID: 24519971]
  32. Science. 2008 Nov 14;322(5904):1065-9 [PMID: 18845710]
  33. Surg Endosc. 2009 Jun;23(6):1180-90 [PMID: 19118414]
  34. Neurosurgery. 2013 Jan;72 Suppl 1:154-64 [PMID: 23254804]
  35. IEEE Comput Graph Appl. 2007 May-Jun;27(3):32-40 [PMID: 17523360]
  36. Lancet. 2004 Oct 23-29;364(9444):1538-40 [PMID: 15500900]
  37. Med Image Anal. 2005 Feb;9(1):87-100 [PMID: 15581814]
  38. Nature. 2008 Apr 3;452(7187):580-9 [PMID: 18385732]
  39. N Engl J Med. 2006 Dec 21;355(25):2664-9 [PMID: 17182991]
  40. Comput Methods Programs Biomed. 2015 Feb;118(2):158-72 [PMID: 25523233]
  41. Radiat Prot Dosimetry. 2016 Jun;169(1-4):398-404 [PMID: 26567322]
  42. Sci Rep. 2016 Mar 03;6:22489 [PMID: 26935567]
  43. JCI Insight. 2017 Nov 16;2(22): [PMID: 29202458]
  44. Int J Radiat Oncol Biol Phys. 2010 Feb 1;76(2):583-96 [PMID: 19910137]
  45. Med Image Anal. 2004 Sep;8(3):387-401 [PMID: 15450231]
  46. J Clin Invest. 2016 May 2;126(5):1679-90 [PMID: 27018592]
  47. Int J Nanomedicine. 2006;1(1):89-96 [PMID: 17722266]
  48. Opt Express. 2012 Jun 18;20(13):14100-8 [PMID: 22714474]
  49. J Image Guid Surg. 1995;1(4):198-207 [PMID: 9079446]
  50. Phys Med Biol. 1997 Jan;42(1):123-32 [PMID: 9015813]
  51. Surg Endosc. 2012 Dec;26(12):3655-62 [PMID: 22736284]
  52. Phys Med Biol. 2001 Mar;46(3):R1-45 [PMID: 11277237]

Grants

  1. 5R01HL083015-10/National Institutes of Health
  2. 1R01HL118650/National Institutes of Health
  3. R01 HL129727/NHLBI NIH HHS
  4. 1R01HL129727/National Institutes of Health
  5. R01 HL118650/NHLBI NIH HHS
  6. 7R01HL111437/National Institutes of Health
  7. 16SDG30910007/American Heart Association
  8. R01 HL111437/NHLBI NIH HHS
  9. R01 HL121754/NHLBI NIH HHS
  10. R01 HL083015/NHLBI NIH HHS

MeSH Term

Animals
Embryo, Nonmammalian
Heart
Image Processing, Computer-Assisted
Microscopy, Fluorescence
Virtual Reality
Zebrafish

Word Cloud

Created with Highcharts 10.0.0VRcardiacimagingenvironmentsimulationimagesegmentation4-DdataregistrationDIRdevelopmentalsimulatesdeformationhighresolutionimages0Imagevirtualrealitypotentialenhancingcardiovasculardiagnosistreatmentprerequisitelabor-intensiveremainsobstacleseamlesslysimulating4-dimensional3-D + timeimmersivephysiologicalapplieddeformableconjunction3-Dreconstructionimplementationrecapitulatecontractilefunctionlight-sheetfluorescencemicroscopyLSFMmethodaddressedinconsistenciesariseindependentsegmentationstime-dependenttherebyenablingcreationfluentlymorphologicalchangesanalyzingmyocardialspatiotemporalinterfacedquantitativecomputationsdemonstratedLSFM-capturedfollowedyieldedaveragedicesimilaritycoefficients92 ± 005n = 51093 ± 006n = 240comparedgroundtruthobtainedOtsuthresholdingmanualrespectivelyresultingwide-anglezoomed-inviewmotionliveembryoniczebrafishheartschambersundergoingstructuralthroughoutcycleThustechniqueallowsinteractivemicro-scalevisualizationmorphologyenablebasicclinicalscienceSimulatingDevelopmentalCardiacMorphologyVirtualRealityUsingDeformableRegistrationApproachCardiologyDynamicLight-sheetMedicalSurgical

Similar Articles

Cited By