Simulating Developmental Cardiac Morphology in Virtual Reality Using a Deformable Image Registration Approach.
Arash Abiri, Yichen Ding, Parinaz Abiri, René R Sevag Packard, Vijay Vedula, Alison Marsden, C-C Jay Kuo, Tzung K Hsiai
Author Information
Arash Abiri: Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
Yichen Ding: Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
Parinaz Abiri: Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
René R Sevag Packard: Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
Vijay Vedula: Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA.
Alison Marsden: Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA.
C-C Jay Kuo: Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
Tzung K Hsiai: Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA. THsiai@mednet.ucla.edu.
中文译文
English
While virtual reality (VR) has potential in enhancing cardiovascular diagnosis and treatment, prerequisite labor-intensive image segmentation remains an obstacle for seamlessly simulating 4-dimensional (4-D, 3-D + time) imaging data in an immersive, physiological VR environment. We applied deformable image registration (DIR) in conjunction with 3-D reconstruction and VR implementation to recapitulate developmental cardiac contractile function from light-sheet fluorescence microscopy (LSFM). This method addressed inconsistencies that would arise from independent segmentations of time-dependent data, thereby enabling the creation of a VR environment that fluently simulates cardiac morphological changes. By analyzing myocardial deformation at high spatiotemporal resolution, we interfaced quantitative computations with 4-D VR. We demonstrated that our LSFM-captured images, followed by DIR, yielded average dice similarity coefficients of 0.92 ± 0.05 (n = 510) and 0.93 ± 0.06 (n = 240) when compared to ground truth images obtained from Otsu thresholding and manual segmentation, respectively. The resulting VR environment simulates a wide-angle zoomed-in view of motion in live embryonic zebrafish hearts, in which the cardiac chambers are undergoing structural deformation throughout the cardiac cycle. Thus, this technique allows for an interactive micro-scale VR visualization of developmental cardiac morphology to enable high resolution simulation for both basic and clinical science.
Surg Endosc. 2017 Aug;31(8):3271-3278
[PMID: 27924387 ]
Semin Radiat Oncol. 2010 Apr;20(2):79-83
[PMID: 20219545 ]
Comput Med Imaging Graph. 1995 Jan-Feb;19(1):69-83
[PMID: 7736420 ]
IEEE Trans Med Imaging. 2000 Feb;19(2):94-102
[PMID: 10784281 ]
Curr Cardiol Rep. 2018 Mar 24;20(5):35
[PMID: 29574550 ]
Interact Cardiovasc Thorac Surg. 2007 Oct;6(5):603-7
[PMID: 17670733 ]
Med Phys. 2005 Apr;32(4):890-901
[PMID: 15895571 ]
Med Phys. 2005 Jun;32(6):1647-59
[PMID: 16013724 ]
Science. 2004 Aug 13;305(5686):1007-9
[PMID: 15310904 ]
Nat Methods. 2007 Apr;4(4):311-3
[PMID: 17339847 ]
Med Image Anal. 2011 Apr;15(2):238-49
[PMID: 21075672 ]
IEEE Trans Pattern Anal Mach Intell. 2014 Jan;36(1):171-80
[PMID: 24231874 ]
Sci Rep. 2017 Aug 17;7(1):8603
[PMID: 28819303 ]
Nat Methods. 2017 Mar 31;14(4):360-373
[PMID: 28362435 ]
J Comput Assist Tomogr. 1996 Nov-Dec;20(6):1012-22
[PMID: 8933812 ]
Acad Radiol. 2004 Feb;11(2):178-89
[PMID: 14974593 ]
Int J Med Robot. 2017 Jun;13(2):
[PMID: 27439562 ]
Nat Methods. 2011 May;8(5):417-23
[PMID: 21378978 ]
Methods Inf Med. 2003;42(5):524-34
[PMID: 14654887 ]
Nat Biotechnol. 2010 Apr;28(4):348-53
[PMID: 20231818 ]
Phys Med Biol. 2010 Jan 7;55(1):207-19
[PMID: 20009197 ]
Med Image Anal. 1998 Sep;2(3):243-60
[PMID: 9873902 ]
Technol Cancer Res Treat. 2008 Feb;7(1):67-81
[PMID: 18198927 ]
J Nucl Med. 2014 Aug;55(8):1375-9
[PMID: 24947062 ]
Nat Commun. 2014 Jul 11;5:4342
[PMID: 25014658 ]
Neurosurgery. 2007 Jul;61(1):142-8; discussion 148-9
[PMID: 17621029 ]
IEEE Trans Med Imaging. 2002 Sep;21(9):1167-78
[PMID: 12564884 ]
Methods Inf Med. 2009;48(1):11-7
[PMID: 19151879 ]
Int J Radiat Oncol Biol Phys. 2006 Mar 15;64(4):1245-54
[PMID: 16442239 ]
Opt Express. 2002 Jan 28;10(2):145-54
[PMID: 19424342 ]
J Biophotonics. 2015 Jan;8(1-2):94-101
[PMID: 24519971 ]
Science. 2008 Nov 14;322(5904):1065-9
[PMID: 18845710 ]
Surg Endosc. 2009 Jun;23(6):1180-90
[PMID: 19118414 ]
Neurosurgery. 2013 Jan;72 Suppl 1:154-64
[PMID: 23254804 ]
IEEE Comput Graph Appl. 2007 May-Jun;27(3):32-40
[PMID: 17523360 ]
Lancet. 2004 Oct 23-29;364(9444):1538-40
[PMID: 15500900 ]
Med Image Anal. 2005 Feb;9(1):87-100
[PMID: 15581814 ]
Nature. 2008 Apr 3;452(7187):580-9
[PMID: 18385732 ]
N Engl J Med. 2006 Dec 21;355(25):2664-9
[PMID: 17182991 ]
Comput Methods Programs Biomed. 2015 Feb;118(2):158-72
[PMID: 25523233 ]
Radiat Prot Dosimetry. 2016 Jun;169(1-4):398-404
[PMID: 26567322 ]
Sci Rep. 2016 Mar 03;6:22489
[PMID: 26935567 ]
JCI Insight. 2017 Nov 16;2(22):
[PMID: 29202458 ]
Int J Radiat Oncol Biol Phys. 2010 Feb 1;76(2):583-96
[PMID: 19910137 ]
Med Image Anal. 2004 Sep;8(3):387-401
[PMID: 15450231 ]
J Clin Invest. 2016 May 2;126(5):1679-90
[PMID: 27018592 ]
Int J Nanomedicine. 2006;1(1):89-96
[PMID: 17722266 ]
Opt Express. 2012 Jun 18;20(13):14100-8
[PMID: 22714474 ]
J Image Guid Surg. 1995;1(4):198-207
[PMID: 9079446 ]
Phys Med Biol. 1997 Jan;42(1):123-32
[PMID: 9015813 ]
Surg Endosc. 2012 Dec;26(12):3655-62
[PMID: 22736284 ]
Phys Med Biol. 2001 Mar;46(3):R1-45
[PMID: 11277237 ]
5R01HL083015-10/National Institutes of Health
1R01HL118650/National Institutes of Health
R01 HL129727/NHLBI NIH HHS
1R01HL129727/National Institutes of Health
R01 HL118650/NHLBI NIH HHS
7R01HL111437/National Institutes of Health
16SDG30910007/American Heart Association
R01 HL111437/NHLBI NIH HHS
R01 HL121754/NHLBI NIH HHS
R01 HL083015/NHLBI NIH HHS
Animals
Embryo, Nonmammalian
Heart
Image Processing, Computer-Assisted
Microscopy, Fluorescence
Virtual Reality
Zebrafish