MAPLE (modular automated platform for large-scale experiments), a robot for integrated organism-handling and phenotyping.

Tom Alisch, James D Crall, Albert B Kao, Dave Zucker, Benjamin L de Bivort
Author Information
  1. Tom Alisch: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States. ORCID
  2. James D Crall: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States. ORCID
  3. Albert B Kao: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.
  4. Dave Zucker: FlySorter LLC, Seattle, United States. ORCID
  5. Benjamin L de Bivort: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States. ORCID

Abstract

Lab organisms are valuable in part because of large-scale experiments like screens, but performing such experiments over long time periods by hand is arduous and error-prone. Organism-handling robots could revolutionize large-scale experiments in the way that liquid-handling robots accelerated molecular biology. We developed a modular automated platform for large-scale experiments (MAPLE), an organism-handling robot capable of conducting lab tasks and experiments, and then deployed it to conduct common experiments in , , , , and . Focusing on fruit flies, we developed a suite of experimental modules that permitted the automated collection of virgin females and execution of an intricate and laborious social behavior experiment. We discovered that (1) pairs of flies exhibit persistent idiosyncrasies in social behavior, which (2) require olfaction and vision, and (3) social interaction network structure is stable over days. These diverse examples demonstrate MAPLE's versatility for automating experimental biology.

Keywords

References

  1. Genes Brain Behav. 2012 Mar;11(2):243-52 [PMID: 22010812]
  2. Nat Methods. 2009 Jun;6(6):451-7 [PMID: 19412169]
  3. PLoS One. 2009;4(2):e4457 [PMID: 19214231]
  4. Sci Rep. 2013;3:srep02120 [PMID: 23817146]
  5. Nat Methods. 2009 Apr;6(4):297-303 [PMID: 19270697]
  6. Methods. 2014 Jun 15;68(1):140-50 [PMID: 24412370]
  7. Cell. 2017 Jul 13;170(2):393-406.e28 [PMID: 28709004]
  8. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3309-13 [PMID: 10716732]
  9. Proc Biol Sci. 2016 Mar 16;283(1826):20152954 [PMID: 26936247]
  10. Chem Senses. 2011 Jul;36(6):497-8 [PMID: 21441366]
  11. Cell. 2017 Dec 14;171(7):1649-1662.e10 [PMID: 29198526]
  12. Proc Natl Acad Sci U S A. 2015 May 26;112(21):6706-11 [PMID: 25953335]
  13. Evolution. 2015 Dec;69(12):3171-85 [PMID: 26531165]
  14. G3 (Bethesda). 2015 Jan 02;5(3):317-27 [PMID: 25556112]
  15. J Insect Physiol. 2017 Aug;101:97-106 [PMID: 28733237]
  16. Science. 1994 Apr 29;264(5159):719-25 [PMID: 8171325]
  17. Nat Genet. 2004 Mar;36(3):283-7 [PMID: 14981521]
  18. Nat Neurosci. 2014 Jul;17(7):962-70 [PMID: 24908103]
  19. J Insect Physiol. 2014 Apr;63:27-31 [PMID: 24561358]
  20. Cell Rep. 2012 Oct 25;2(4):991-1001 [PMID: 23063364]
  21. Proc Natl Acad Sci U S A. 2015 May 26;112(21):6700-5 [PMID: 25953337]
  22. PLoS One. 2015 Sep 02;10(9):e0136487 [PMID: 26332211]
  23. Behav Genet. 1977 Mar;7(2):139-46 [PMID: 405964]
  24. Elife. 2017 May 31;6: [PMID: 28537553]
  25. J R Soc Interface. 2014 Oct 6;11(99):null [PMID: 25142523]
  26. Nat Methods. 2015 Jul;12(7):657-660 [PMID: 26005812]
  27. Nature. 2015 Mar 12;519(7542):233-6 [PMID: 25533959]
  28. Biol Lett. 2012 Dec 23;8(6):1050-4 [PMID: 22915627]
  29. PLoS One. 2014 Jan 20;9(1):e84656 [PMID: 24465422]
  30. Cold Spring Harb Protoc. 2010 Nov 01;2010(11):pdb.prot5518 [PMID: 21041391]
  31. J Exp Biol. 2017 Jan 1;220(Pt 1):35-41 [PMID: 28057826]
  32. Learn Mem. 2015 Jan 15;22(2):64-8 [PMID: 25593291]
  33. J Biol Chem. 1995 Jun 16;270(24):14376-82 [PMID: 7540168]
  34. Proc Natl Acad Sci U S A. 2012 Oct 16;109 Suppl 2:17174-9 [PMID: 22802679]
  35. Sci Rep. 2015 Oct 19;5:15298 [PMID: 26477397]
  36. Phys Biol. 2017 Feb 06;14(1):015002 [PMID: 28166059]
  37. Nat Methods. 2013 Jan;10(1):64-7 [PMID: 23202433]
  38. Nat Commun. 2012;3:1156 [PMID: 23093193]
  39. PLoS Biol. 2017 Oct 19;15(10):e2003026 [PMID: 29049280]
  40. Nat Neurosci. 2012 Jun;15(6):876-83 [PMID: 22561453]
  41. Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19834-9 [PMID: 23150588]
  42. Curr Biol. 2009 May 12;19(9):730-4 [PMID: 19361993]

Grants

  1. R43 MH119092/NIMH NIH HHS
  2. R43 OD023302/NIH HHS

MeSH Term

Animals
Caenorhabditis elegans
Drosophila melanogaster
Molecular Biology
Robotics
Saccharomyces cerevisiae
Social Behavior

Word Cloud

Created with Highcharts 10.0.0experimentslarge-scaleautomatedrobotexperimentalsocialrobotsbiologydevelopedmodularplatformMAPLEorganism-handlingfliesbehaviorphenotypingLaborganismsvaluablepartlikescreensperforminglongtimeperiodshandarduouserror-proneOrganism-handlingrevolutionizewayliquid-handlingacceleratedmolecularcapableconductinglabtasksdeployedconductcommonFocusingfruitsuitemodulespermittedcollectionvirginfemalesexecutionintricatelaboriousexperimentdiscovered1pairsexhibitpersistentidiosyncrasies2requireolfactionvision3interactionnetworkstructurestabledaysdiverseexamplesdemonstrateMAPLE'sversatilityautomatingintegratedCelegansDmelanogasterScerevisiaeautomationbombusimpatiensculturinghighthroughputneurosciencephysarumpolycephalum

Similar Articles

Cited By (17)