Marchantia liverworts as a proxy to plants' basal microbiomes.

Luis D Alcaraz, Mariana Peimbert, Hugo R Barajas, Ana E Dorantes-Acosta, John L Bowman, Mario A Arteaga-Vázquez
Author Information
  1. Luis D Alcaraz: Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, 04510, Coyoacán, Mexico City, Mexico. lalcaraz@ciencias.unam.mx. ORCID
  2. Mariana Peimbert: Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, 05348, Mexico City, Mexico.
  3. Hugo R Barajas: Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, 04510, Coyoacán, Mexico City, Mexico.
  4. Ana E Dorantes-Acosta: University of Veracruz, Institute for Biotechnology and Applied Ecology (INBIOTECA), Avenida de las Culturas Veracruzanas 101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico.
  5. John L Bowman: School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia.
  6. Mario A Arteaga-Vázquez: University of Veracruz, Institute for Biotechnology and Applied Ecology (INBIOTECA), Avenida de las Culturas Veracruzanas 101, Colonia Emiliano Zapata, 91090, Xalapa, Veracruz, Mexico. maarteaga@uv.mx.

Abstract

Microbiomes influence plant establishment, development, nutrient acquisition, pathogen defense, and health. Plant microbiomes are shaped by interactions between the microbes and a selection process of host plants that distinguishes between pathogens, commensals, symbionts and transient bacteria. In this work, we explore the microbiomes through massive sequencing of the 16S rRNA genes of microbiomes two Marchantia species of liverworts. We compared microbiomes from M. polymorpha and M. paleacea plants collected in the wild relative to their soils substrates and from plants grown in vitro that were established from gemmae obtained from the same populations of wild plants. Our experimental setup allowed identification of microbes found in both native and in vitro Marchantia species. The main OTUs (97% identity) in Marchantia microbiomes were assigned to the following genera: Methylobacterium, Rhizobium, Paenibacillus, Lysobacter, Pirellula, Steroidobacter, and Bryobacter. The assigned genera correspond to bacteria capable of plant-growth promotion, complex exudate degradation, nitrogen fixation, methylotrophs, and disease-suppressive bacteria, all hosted in the relatively simple anatomy of the plant. Based on their long evolutionary history Marchantia is a promising model to study not only long-term relationships between plants and their microbes but also the transgenerational contribution of microbiomes to plant development and their response to environmental changes.

Associated Data

figshare | 10.6084/m9.figshare.3470555.v1

References

  1. J Exp Bot. 2007;58(7):1783-93 [PMID: 17374874]
  2. Int J Syst Evol Microbiol. 2004 Nov;54(Pt 6):2269-73 [PMID: 15545469]
  3. BMC Microbiol. 2016 Nov 16;16(1):276 [PMID: 27852238]
  4. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 [PMID: 16820507]
  5. Nature. 2012 Aug 2;488(7409):86-90 [PMID: 22859206]
  6. Microb Ecol. 2015 May;69(4):914-21 [PMID: 25687126]
  7. Int J Syst Evol Microbiol. 2010 Feb;60(Pt 2):301-6 [PMID: 19651730]
  8. World J Microbiol Biotechnol. 2018 Mar 31;34(4):58 [PMID: 29605884]
  9. Nat Commun. 2012 May 15;3:835 [PMID: 22588297]
  10. Microb Biotechnol. 2013 Nov;6(6):637-50 [PMID: 24034361]
  11. ISME J. 2013 Dec;7(12):2248-58 [PMID: 23864127]
  12. Planta. 2010 Mar;231(4):965-76 [PMID: 20101410]
  13. J Plant Physiol. 2014 Sep 15;171(15):1334-43 [PMID: 25046754]
  14. PeerJ. 2016 Dec 22;4:e2837 [PMID: 28028487]
  15. J Bacteriol. 2002 Apr;184(7):1818 [PMID: 11889085]
  16. ISME J. 2010 Jun;4(6):719-28 [PMID: 20164863]
  17. Am J Bot. 2007 Nov;94(11):1756-77 [PMID: 21636371]
  18. Plant Physiol. 1995 Aug;108(4):1359-1368 [PMID: 12228547]
  19. New Phytol. 2005 Feb;165(2):567-79 [PMID: 15720667]
  20. Plant Cell Physiol. 2016 Feb;57(2):210-29 [PMID: 25766905]
  21. Int J Syst Evol Microbiol. 2008 Sep;58(Pt 9):2215-23 [PMID: 18768632]
  22. Environ Monit Assess. 2015 Feb;187(2):41 [PMID: 25637385]
  23. ISME J. 2012 Aug;6(8):1621-4 [PMID: 22402401]
  24. Int J Syst Evol Microbiol. 2011 Apr;61(Pt 4):870-6 [PMID: 20495043]
  25. Annu Rev Plant Biol. 2013;64:807-38 [PMID: 23373698]
  26. Science. 2004 Jan 30;303(5658):689-92 [PMID: 14752164]
  27. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53 [PMID: 23576752]
  28. New Phytol. 2018 May;218(3):1217-1232 [PMID: 29411387]
  29. J Exp Bot. 2008;59(5):1047-58 [PMID: 18267939]
  30. Genome Res. 2011 Mar;21(3):494-504 [PMID: 21212162]
  31. New Phytol. 2015 Jun;206(4):1196-206 [PMID: 25655016]
  32. PLoS One. 2016 Feb 09;11(2):e0148979 [PMID: 26859489]
  33. New Phytol. 2018 Mar 24;:null [PMID: 29573278]
  34. Cell. 2017 Oct 5;171(2):287-304.e15 [PMID: 28985561]
  35. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  36. Sci Rep. 2016 Oct 24;6:35825 [PMID: 27775000]
  37. Appl Environ Microbiol. 2000 Jun;66(6):2365-71 [PMID: 10831412]
  38. Microbes Environ. 2014;29(1):89-95 [PMID: 24621511]
  39. ISME J. 2010 Mar;4(3):388-98 [PMID: 19924155]
  40. Plant Cell Physiol. 2018 Apr 1;59(4):651-660 [PMID: 29177478]
  41. Mol Microbiol. 2001 Sep;41(5):1063-76 [PMID: 11555287]
  42. New Phytol. 2010 Apr;186(2):514-25 [PMID: 20059702]
  43. Naturwissenschaften. 2005 Jul;92(7):347-9 [PMID: 15965759]
  44. Appl Environ Microbiol. 2016 Jun 13;82(13):3822-33 [PMID: 27107117]
  45. Nature. 2012 Aug 2;488(7409):91-5 [PMID: 22859207]
  46. Sci Rep. 2013;3:1532 [PMID: 23524944]
  47. Nature. 2017 Nov 23;551(7681):457-463 [PMID: 29088705]
  48. PLoS One. 2016 Apr 11;11(4):e0153353 [PMID: 27064484]
  49. Curr Biol. 2016 Mar 7;26(5):R186-7 [PMID: 26954434]
  50. Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E911-20 [PMID: 25605935]
  51. Saudi J Biol Sci. 2015 Mar;22(2):204-10 [PMID: 25737654]
  52. Mol Ecol. 2014 Sep;23(18):4498-510 [PMID: 25113243]
  53. Carbohydr Polym. 2014 Nov 26;113:446-54 [PMID: 25256506]
  54. Mol Ecol. 2015 Sep;24(18):4795-807 [PMID: 26335913]
  55. Appl Environ Microbiol. 2001 Oct;67(10):4399-406 [PMID: 11571135]
  56. Genome Biol. 2014;15(12):550 [PMID: 25516281]

Grants

  1. 237387/Consejo Nacional de Ciencia y Tecnología (National Council of Science and Technology, Mexico)
  2. TA200117/Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (Dirección General Asuntos del Personal Académico, Universidad Nacional Autónoma de México)

MeSH Term

Bacteria
Host Microbial Interactions
Marchantia
Microbiota
Phylogeny
RNA, Ribosomal, 16S
Sequence Analysis, RNA
Soil Microbiology
Symbiosis

Chemicals

RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0microbiomesplantsMarchantiaplantmicrobesbacteriadevelopmentspeciesliverwortsMwildvitroassignedMicrobiomesinfluenceestablishmentnutrientacquisitionpathogendefensehealthPlantshapedinteractionsselectionprocesshostdistinguishespathogenscommensalssymbiontstransientworkexploremassivesequencing16SrRNAgenestwocomparedpolymorphapaleaceacollectedrelativesoilssubstratesgrownestablishedgemmaeobtainedpopulationsexperimentalsetupallowedidentificationfoundnativemainOTUs97%identityfollowinggenera:MethylobacteriumRhizobiumPaenibacillusLysobacterPirellulaSteroidobacterBryobactergeneracorrespondcapableplant-growthpromotioncomplexexudatedegradationnitrogenfixationmethylotrophsdisease-suppressivehostedrelativelysimpleanatomyBasedlongevolutionaryhistorypromisingmodelstudylong-termrelationshipsalsotransgenerationalcontributionresponseenvironmentalchangesproxyplants'basal

Similar Articles

Cited By