Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution.

Aude Gilabert, Thomas D Otto, Gavin G Rutledge, Blaise Franzon, Benjamin Ollomo, Céline Arnathau, Patrick Durand, Nancy D Moukodoum, Alain-Prince Okouga, Barthélémy Ngoubangoye, Boris Makanga, Larson Boundenga, Christophe Paupy, François Renaud, Franck Prugnolle, Virginie Rougeron
Author Information
  1. Aude Gilabert: MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
  2. Thomas D Otto: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom.
  3. Gavin G Rutledge: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom.
  4. Blaise Franzon: MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
  5. Benjamin Ollomo: Centre International de Recherches Médicales de Franceville, Franceville, Gabon.
  6. Céline Arnathau: MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
  7. Patrick Durand: MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
  8. Nancy D Moukodoum: Centre International de Recherches Médicales de Franceville, Franceville, Gabon.
  9. Alain-Prince Okouga: Centre International de Recherches Médicales de Franceville, Franceville, Gabon.
  10. Barthélémy Ngoubangoye: Centre International de Recherches Médicales de Franceville, Franceville, Gabon.
  11. Boris Makanga: Centre International de Recherches Médicales de Franceville, Franceville, Gabon.
  12. Larson Boundenga: Centre International de Recherches Médicales de Franceville, Franceville, Gabon.
  13. Christophe Paupy: MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
  14. François Renaud: MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
  15. Franck Prugnolle: MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
  16. Virginie Rougeron: MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France. ORCID

Abstract

Although Plasmodium vivax is responsible for the majority of malaria infections outside Africa, little is known about its evolution and pathway to humans. Its closest genetic relative, P. vivax-like, was discovered in African great apes and is hypothesized to have given rise to P. vivax in humans. To unravel the evolutionary history and adaptation of P. vivax to different host environments, we generated using long- and short-read sequence technologies 2 new P. vivax-like reference genomes and 9 additional P. vivax-like genotypes. Analyses show that the genomes of P. vivax and P. vivax-like are highly similar and colinear within the core regions. Phylogenetic analyses clearly show that P. vivax-like parasites form a genetically distinct clade from P. vivax. Concerning the relative divergence dating, we show that the evolution of P. vivax in humans did not occur at the same time as the other agents of human malaria, thus suggesting that the transfer of Plasmodium parasites to humans happened several times independently over the history of the Homo genus. We further identify several key genes that exhibit signatures of positive selection exclusively in the human P. vivax parasites. Two of these genes have been identified to also be under positive selection in the other main human malaria agent, P. falciparum, thus suggesting their key role in the evolution of the ability of these parasites to infect humans or their anthropophilic vectors. Finally, we demonstrate that some gene families important for red blood cell (RBC) invasion (a key step of the life cycle of these parasites) have undergone lineage-specific evolution in the human parasite (e.g., reticulocyte-binding proteins [RBPs]).

Associated Data

Dryad | 10.5061/dryad.32tm1k4.2; 10.5061/dryad.32tm1k4

References

  1. Proc Natl Acad Sci U S A. 2013 May 14;110(20):8123-8 [PMID: 23637341]
  2. Bioinformatics. 2011 Feb 15;27(4):578-9 [PMID: 21149342]
  3. BMC Bioinformatics. 2012;13 Suppl 14:S8 [PMID: 23095524]
  4. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1980-5 [PMID: 15684081]
  5. Trends Ecol Evol. 2009 Jun;24(6):332-40 [PMID: 19307040]
  6. Proc Natl Acad Sci U S A. 2016 May 31;113(22):6271-6 [PMID: 27190089]
  7. PLoS Negl Trop Dis. 2015 Mar 13;9(3):e0003566 [PMID: 25768941]
  8. BMC Bioinformatics. 2004 Aug 19;5:113 [PMID: 15318951]
  9. Cell Microbiol. 2012 Jul;14(7):1003-9 [PMID: 22432505]
  10. Nature. 2008 Oct 9;455(7214):757-63 [PMID: 18843361]
  11. Nature. 2017 Feb 2;542(7639):101-104 [PMID: 28117441]
  12. Nat Commun. 2014;5:3346 [PMID: 24557500]
  13. Mol Biol Evol. 2000 Apr;17(4):540-52 [PMID: 10742046]
  14. Antimicrob Agents Chemother. 2007 Nov;51(11):4090-7 [PMID: 17846129]
  15. Mol Biol Evol. 2015 May;32(5):1354-64 [PMID: 25589738]
  16. BMC Biol. 2014 Oct 30;12:86 [PMID: 25359557]
  17. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  18. Curr Biol. 2010 Jul 27;20(14):1283-9 [PMID: 20656209]
  19. Bioinformatics. 2009 Aug 1;25(15):1968-9 [PMID: 19497936]
  20. Genome Res. 2018 Apr;28(4):547-560 [PMID: 29500236]
  21. Bioinformatics. 2013 Nov 1;29(21):2669-77 [PMID: 23990416]
  22. Nat Genet. 2011 Sep 18;43(10):1031-4 [PMID: 21926973]
  23. J Comput Biol. 2006 Jun;13(5):1028-40 [PMID: 16796549]
  24. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  25. Int J Parasitol. 2017 Feb;47(2-3):87-97 [PMID: 27381764]
  26. PLoS One. 2014 Jun 27;9(6):e80641 [PMID: 24971792]
  27. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  28. Genome Announc. 2016 Sep 01;4(5): [PMID: 27587810]
  29. Drug Resist Updat. 2015 Jan;18:47-54 [PMID: 25467627]
  30. Mol Biol Evol. 2006 Feb;23(2):254-67 [PMID: 16221896]
  31. PLoS Negl Trop Dis. 2012;6(9):e1811 [PMID: 22970335]
  32. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  33. PLoS One. 2011;6(7):e22213 [PMID: 21789235]
  34. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19333-8 [PMID: 23129628]
  35. Mol Biol Evol. 2005 Aug;22(8):1686-93 [PMID: 15858201]
  36. Wellcome Open Res. 2016 Nov 15;1:4 [PMID: 28008421]
  37. Nucleic Acids Res. 2016 Jul 8;44(W1):W29-34 [PMID: 27105845]
  38. Mol Microbiol. 2007 Jul;65(2):231-49 [PMID: 17630968]
  39. Nat Genet. 2016 Aug;48(8):953-8 [PMID: 27348298]
  40. Wellcome Open Res. 2017 Jun 16;2:42 [PMID: 28748222]
  41. Nature. 2002 Oct 3;419(6906):498-511 [PMID: 12368864]
  42. Genome Biol. 2010;11(4):R41 [PMID: 20388197]
  43. Hematology. 2006 Oct;11(5):389-98 [PMID: 17607593]
  44. N Engl J Med. 1976 Aug 5;295(6):302-4 [PMID: 778616]
  45. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  46. PLoS Negl Trop Dis. 2010 Aug 03;4(8):e774 [PMID: 20689816]
  47. Mol Biol Evol. 2004 Feb;21(2):255-65 [PMID: 14660700]
  48. Bioinformatics. 2011 Nov 1;27(21):2987-93 [PMID: 21903627]
  49. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  50. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  51. Nat Genet. 2012 Sep;44(9):1051-5 [PMID: 22863735]
  52. Mol Biol Evol. 1995 Jul;12(4):616-26 [PMID: 7659017]
  53. Clin Infect Dis. 2008 Jan 15;46(2):172-3 [PMID: 18171246]
  54. DNA Res. 2014 Dec;21(6):661-71 [PMID: 25240466]
  55. Bioinformatics. 2005 Aug 15;21(16):3422-3 [PMID: 15976072]
  56. Mol Biol Evol. 2005 Dec;22(12):2472-9 [PMID: 16107592]
  57. PLoS One. 2015 Jun 03;10(6):e0126933 [PMID: 26039338]
  58. Nat Microbiol. 2018 Jun;3(6):687-697 [PMID: 29784978]
  59. Adv Parasitol. 2013;81:203-22 [PMID: 23384624]
  60. Clin Microbiol Rev. 2002 Oct;15(4):564-94 [PMID: 12364370]
  61. Mol Biol Evol. 2018 Jul 1;35(7):1770-1782 [PMID: 29893954]
  62. PLoS Pathog. 2009 May;5(5):e1000446 [PMID: 19478877]
  63. Nat Commun. 2014 Sep 09;5:4754 [PMID: 25203297]
  64. Nature. 2008 Oct 9;455(7214):799-803 [PMID: 18843368]
  65. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  66. Nat Methods. 2013 Jun;10(6):563-9 [PMID: 23644548]
  67. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D363-8 [PMID: 16381887]
  68. Malar J. 2012 Feb 10;11:41 [PMID: 22321373]
  69. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  70. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W557-9 [PMID: 15980534]
  71. Syst Biol. 2006 Feb;55(1):21-30 [PMID: 16507521]
  72. Proc Natl Acad Sci U S A. 2016 May 10;113(19):5329-34 [PMID: 27071123]
  73. Brief Bioinform. 2013 Mar;14(2):203-12 [PMID: 22253280]
  74. PLoS Biol. 2018 Aug 24;16(8):e2006035 [PMID: 30142149]
  75. Adv Parasitol. 2013;81:1-26 [PMID: 23384620]
  76. Cell. 1995 Jul 14;82(1):89-100 [PMID: 7606788]

Grants

  1. /Wellcome Trust
  2. 098051/Wellcome Trust
  3. MR/J004111/1/Medical Research Council

MeSH Term

Animals
Base Sequence
Culicidae
Erythrocytes
Evolution, Molecular
Genome
Humans
Malaria
Malaria, Falciparum
Malaria, Vivax
Pan troglodytes
Phylogeny
Plasmodium
Plasmodium falciparum
Plasmodium vivax

Word Cloud

Created with Highcharts 10.0.0Pvivaxvivax-likeevolutionhumansparasitesPlasmodiumhumanmalariashowkeyrelativehistorynewgenomesthussuggestingseveralgenespositiveselectionAlthoughresponsiblemajorityinfectionsoutsideAfricalittleknownpathwayclosestgeneticdiscoveredAfricangreatapeshypothesizedgivenriseunravelevolutionaryadaptationdifferenthostenvironmentsgeneratedusinglong-short-readsequencetechnologies2reference9additionalgenotypesAnalyseshighlysimilarcolinearwithincoreregionsPhylogeneticanalysesclearlyformgeneticallydistinctcladeConcerningdivergencedatingoccurtimeagentstransferhappenedtimesindependentlyHomogenusidentifyexhibitsignaturesexclusivelyTwoidentifiedalsomainagentfalciparumroleabilityinfectanthropophilicvectorsFinallydemonstrategenefamiliesimportantredbloodcellRBCinvasionsteplifecycleundergonelineage-specificparasiteegreticulocyte-bindingproteins[RBPs]genomesequencesshedinsightsbiology

Similar Articles

Cited By