Possible neurotoxicity of the anesthetic propofol: evidence for the inhibition of complex II of the respiratory chain in area CA3 of rat hippocampal slices.

Nikolaus Berndt, Jörg Rösner, Rizwan Ul Haq, Oliver Kann, Richard Kovács, Hermann-Georg Holzhütter, Claudia Spies, Agustin Liotta
Author Information
  1. Nikolaus Berndt: Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
  2. Jörg Rösner: Neuroscience Research Center, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
  3. Rizwan Ul Haq: Neuroscience Research Center, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
  4. Oliver Kann: Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany.
  5. Richard Kovács: Institute for Neurophysiology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
  6. Hermann-Georg Holzhütter: Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
  7. Claudia Spies: Department of Anesthesiology and Intensive Care, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
  8. Agustin Liotta: Neuroscience Research Center, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany. agustin.liotta@charite.de.

Abstract

Propofol is the most frequently used intravenous anesthetic for induction and maintenance of anesthesia. Propofol acts first and formost as a GABA-agonist, but effects on other neuronal receptors and voltage-gated ion channels have been described. Besides its direct effect on neurotransmission, propofol-dependent impairment of mitochondrial function in neurons has been suggested to be responsible for neurotoxicity and postoperative brain dysfunction. To clarify the potential neurotoxic effect in more detail, we investigated the effects of propofol on neuronal energy metabolism of hippocampal slices of the stratum pyramidale of area CA3 at different activity states. We combined oxygen-measurements, electrophysiology and flavin adenine dinucleotide (FAD)-imaging with computational modeling to uncover molecular targets in mitochondrial energy metabolism that are directly inhibited by propofol. We found that high concentrations of propofol (100 µM) significantly decrease population spikes, paired pulse ratio, the cerebral metabolic rate of oxygen consumption (CMRO), frequency and power of gamma oscillations and increase FAD-oxidation. Model-based simulation of mitochondrial FAD redox state at inhibition of different respiratory chain (RC) complexes and the pyruvate-dehydrogenase show that the alterations in FAD-autofluorescence during propofol administration can be explained with a strong direct inhibition of the complex II (cxII) of the RC. While this inhibition may not affect ATP availability under normal conditions, it may have an impact at high energy demand. Our data support the notion that propofol may lead to neurotoxicity and neuronal dysfunction by directly affecting the energy metabolism in neurons.

Keywords

References

  1. Int J Cell Biol. 2012;2012:757594 [PMID: 22719765]
  2. CNS Drugs. 2003;17(4):235-72 [PMID: 12665397]
  3. Recent Results Cancer Res. 2016;207:221-32 [PMID: 27557541]
  4. N Engl J Med. 2010 Dec 30;363(27):2638-50 [PMID: 21190458]
  5. Cell Rep. 2018 Jan 9;22(2):427-440 [PMID: 29320738]
  6. Anesthesiology. 1998 Apr;88(4):928-34 [PMID: 9579501]
  7. Eur J Pharmacol. 2013 Oct 15;718(1-3):63-73 [PMID: 24051267]
  8. J Child Neurol. 2016 Nov;31(13):1489-1494 [PMID: 27488955]
  9. Nat Rev Neurosci. 2007 Jan;8(1):45-56 [PMID: 17180162]
  10. J Neurophysiol. 2011 Jan;105(1):172-87 [PMID: 20881199]
  11. J Cereb Blood Flow Metab. 2011 Jan;31(1):68-81 [PMID: 20859293]
  12. Stress. 2015;18(2):188-97 [PMID: 25556979]
  13. Nat Chem Biol. 2013 Nov;9(11):715-20 [PMID: 24056400]
  14. Int J Mol Sci. 2017 Sep 07;18(9):null [PMID: 28880249]
  15. J Biol Chem. 1969 May 10;244(9):2317-24 [PMID: 4306507]
  16. Anesthesiology. 2015 Nov;123(5):1067-83 [PMID: 26352374]
  17. Neurochem Int. 2010 Feb;56(3):379-86 [PMID: 20036704]
  18. Epilepsia. 2005 May;46(5):624-35 [PMID: 15857426]
  19. Acta Anaesthesiol Scand. 2009 Nov;53(10):1354-60 [PMID: 19650805]
  20. J Cereb Blood Flow Metab. 2015 Sep;35(9):1494-506 [PMID: 25899300]
  21. PLoS One. 2016 Oct 27;11(10):e0165052 [PMID: 27788177]
  22. Pharmacol Biochem Behav. 2004 Mar;77(3):595-9 [PMID: 15006471]
  23. PLoS One. 2013;8(3):e57685 [PMID: 23483920]
  24. Neurochem Res. 1997 Mar;22(3):287-92 [PMID: 9051663]
  25. J Cereb Blood Flow Metab. 2014 Mar;34(3):514-21 [PMID: 24398942]
  26. Eur J Anaesthesiol. 2015 Aug;32(8):527-34 [PMID: 25774459]
  27. Mol Pharmacol. 2018 Feb;93(2):178-189 [PMID: 29192122]
  28. J Microsc. 2016 Nov;264(2):215-223 [PMID: 27368071]
  29. J Neurosci Methods. 2013 Jan 30;212(2):222-7 [PMID: 23142181]
  30. Neuron. 2017 Aug 30;95(5):1007-1018 [PMID: 28858612]
  31. Br J Anaesth. 2013 Jun;110 Suppl 1:i98-105 [PMID: 23539235]
  32. Neurosci Res. 2003 Apr;45(4):459-72 [PMID: 12657459]
  33. J Neurosci. 2008 Jan 30;28(5):1153-62 [PMID: 18234893]
  34. Am J Med. 1950 Feb;8(2):205-17 [PMID: 15405885]
  35. Physiol Rev. 1997 Jul;77(3):731-58 [PMID: 9234964]
  36. BMC Anesthesiol. 2015 Apr 28;15:61 [PMID: 25928189]
  37. Acta Anaesthesiol Scand. 2010 Feb;54(2):162-8 [PMID: 19764909]
  38. J Cereb Blood Flow Metab. 2017 Jan 1;:271678X17740091 [PMID: 29099662]
  39. J Bioenerg Biomembr. 2016 Aug;48(4):413-23 [PMID: 27525823]
  40. Anesth Analg. 2016 Jan;122(1):234-42 [PMID: 26418126]
  41. J Cereb Blood Flow Metab. 2012 Nov;32(11):2076-83 [PMID: 22929439]
  42. J Cereb Blood Flow Metab. 2013 Feb;33(2):263-71 [PMID: 23168532]

MeSH Term

Adenosine Triphosphate
Anesthetics, Intravenous
Animals
CA3 Region, Hippocampal
Electron Transport Complex II
Flavin-Adenine Dinucleotide
Hippocampus
Male
Mitochondria
Neurotoxicity Syndromes
Organ Culture Techniques
Oxygen Consumption
Propofol
Rats, Wistar
Synaptic Transmission

Chemicals

Anesthetics, Intravenous
Flavin-Adenine Dinucleotide
Adenosine Triphosphate
Electron Transport Complex II
Propofol

Word Cloud

Created with Highcharts 10.0.0propofolenergyinhibitionPropofolneuronalmitochondrialneurotoxicitymetabolismIImayanestheticeffectsdirecteffectneuronsdysfunctionhippocampalslicesareaCA3differentFADdirectlyhighrespiratorychainRCcomplexfrequentlyusedintravenousinductionmaintenanceanesthesiaactsfirstformostGABA-agonistreceptorsvoltage-gatedionchannelsdescribedBesidesneurotransmissionpropofol-dependentimpairmentfunctionsuggestedresponsiblepostoperativebrainclarifypotentialneurotoxicdetailinvestigatedstratumpyramidaleactivitystatescombinedoxygen-measurementselectrophysiologyflavinadeninedinucleotide-imagingcomputationalmodelinguncovermoleculartargetsinhibitedfoundconcentrations100 µMsignificantlydecreasepopulationspikespairedpulseratiocerebralmetabolicrateoxygenconsumptionCMROfrequencypowergammaoscillationsincreaseFAD-oxidationModel-basedsimulationredoxstatecomplexespyruvate-dehydrogenaseshowalterationsFAD-autofluorescenceadministrationcanexplainedstrongcxIIaffectATPavailabilitynormalconditionsimpactdemanddatasupportnotionleadaffectingPossiblepropofol:evidenceratAnesthesiaComplexGammaoscillationHippocampusMitochondria

Similar Articles

Cited By