Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives.

Daniel P Grosvenor, Odran Sourdeval, Paquita Zuidema, Andrew Ackerman, Mikhail D Alexandrov, Ralf Bennartz, Reinout Boers, Brian Cairns, J Christine Chiu, Matthew Christensen, Hartwig Deneke, Michael Diamond, Graham Feingold, Ann Fridlind, Anja Hünerbein, Christine Knist, Pavlos Kollias, Alexander Marshak, Daniel McCoy, Daniel Merk, David Painemal, John Rausch, Daniel Rosenfeld, Herman Russchenberg, Patric Seifert, Kenneth Sinclair, Philip Stier, Bastiaan van Diedenhoven, Manfred Wendisch, Frank Werner, Robert Wood, Zhibo Zhang, Johannes Quaas
Author Information
  1. Daniel P Grosvenor: School of Earth and Environment University of Leeds Leeds UK. ORCID
  2. Odran Sourdeval: Leipzig Institute for Meteorology Universität Leipzig Leipzig Germany.
  3. Paquita Zuidema: Department of Atmospheric Sciences Rosenstiel School of Marine and Atmospheric Science Miami FL USA. ORCID
  4. Andrew Ackerman: NASA Goddard Institute for Space Studies New York NY USA. ORCID
  5. Mikhail D Alexandrov: NASA Goddard Institute for Space Studies New York NY USA.
  6. Ralf Bennartz: Department of Earth and Environmental Sciences Vanderbilt University Nashville TN USA.
  7. Reinout Boers: Royal Netherlands Meteorological Institute De Bilt The Netherlands. ORCID
  8. Brian Cairns: NASA Goddard Institute for Space Studies New York NY USA.
  9. J Christine Chiu: Department of Atmospheric Science Colorado State University Fort Collins CO USA. ORCID
  10. Matthew Christensen: Rutherford Appleton Laboratory Harwell UK.
  11. Hartwig Deneke: Leibniz Institute for Tropospheric Research Leipzig Germany.
  12. Michael Diamond: Department of Atmospheric Sciences University of Washington Seattle WA USA. ORCID
  13. Graham Feingold: Chemical Sciences Division, Earth System Research Laboratory National Oceanic and Atmospheric Administration Boulder CO USA. ORCID
  14. Ann Fridlind: NASA Goddard Institute for Space Studies New York NY USA. ORCID
  15. Anja Hünerbein: Leibniz Institute for Tropospheric Research Leipzig Germany.
  16. Christine Knist: Deutscher Wetterdienst Lindenberg Germany.
  17. Pavlos Kollias: School of Marine and Atmospheric Sciences Stony Brook University Stony Brook NY USA. ORCID
  18. Alexander Marshak: NASA Goddard Space Flight Center Greenbelt MD USA. ORCID
  19. Daniel McCoy: School of Earth and Environment University of Leeds Leeds UK.
  20. Daniel Merk: Leibniz Institute for Tropospheric Research Leipzig Germany.
  21. David Painemal: NASA Langley Research Center Hampton VA USA. ORCID
  22. John Rausch: Department of Earth and Environmental Sciences Vanderbilt University Nashville TN USA.
  23. Daniel Rosenfeld: Institute of Earth Sciences The Hebrew University of Jerusalem Jerusalem Israel. ORCID
  24. Herman Russchenberg: Department of Geoscience and Remote Sensing Delft University of Technology Delft The Netherlands.
  25. Patric Seifert: Leibniz Institute for Tropospheric Research Leipzig Germany. ORCID
  26. Kenneth Sinclair: NASA Goddard Institute for Space Studies New York NY USA.
  27. Philip Stier: Department of Physics University of Oxford Oxford UK. ORCID
  28. Bastiaan van Diedenhoven: NASA Goddard Institute for Space Studies New York NY USA. ORCID
  29. Manfred Wendisch: Leipzig Institute for Meteorology Universität Leipzig Leipzig Germany. ORCID
  30. Frank Werner: Joint Center for Earth Systems Technology Baltimore MD USA. ORCID
  31. Robert Wood: Department of Atmospheric Sciences University of Washington Seattle WA USA. ORCID
  32. Zhibo Zhang: Physics Department UMBC Baltimore MD USA. ORCID
  33. Johannes Quaas: Leipzig Institute for Meteorology Universität Leipzig Leipzig Germany. ORCID

Abstract

The cloud droplet number concentration (N ) is of central interest to improve the understanding of cloud physics and for quantifying the effective radiative forcing by aerosol-cloud interactions. Current standard satellite retrievals do not operationally provide N , but it can be inferred from retrievals of cloud optical depth (τ ) cloud droplet effective radius (r ) and cloud top temperature. This review summarizes issues with this approach and quantifies uncertainties. A total relative uncertainty of 78% is inferred for pixel-level retrievals for relatively homogeneous, optically thick and unobscured stratiform clouds with favorable viewing geometry. The uncertainty is even greater if these conditions are not met. For averages over 1° ×1° regions the uncertainty is reduced to 54% assuming random errors for instrument uncertainties. In contrast, the few evaluation studies against reference in situ observations suggest much better accuracy with little variability in the bias. More such studies are required for a better error characterization. N uncertainty is dominated by errors in r , and therefore, improvements in r retrievals would greatly improve the quality of the N retrievals. Recommendations are made for how this might be achieved. Some existing N data sets are compared and discussed, and best practices for the use of N data from current passive instruments (e.g., filtering criteria) are recommended. Emerging alternative N estimates are also considered. First, new ideas to use additional information from existing and upcoming spaceborne instruments are discussed, and second, approaches using high-quality ground-based observations are examined.

Keywords

References

  1. J Geophys Res Atmos. 2015 May 16;120(9):4132-4154 [PMID: 27656330]
  2. Science. 2015 Oct 2;350(6256):87-90 [PMID: 26430119]
  3. Appl Opt. 2013 Apr 10;52(11):2235-47 [PMID: 23670751]
  4. J Geophys Res Atmos. 2014 Jul 16;119(13):8304-8328 [PMID: 25821665]
  5. IEEE Trans Geosci Remote Sens. 2017 Jan;55(1):502-525 [PMID: 29657349]
  6. J Geophys Res Atmos. 2016 Jun 27;121(12):7007-7025 [PMID: 32908807]
  7. Rev Geophys. 2018 Jun;56(2):409-453 [PMID: 30148283]
  8. Nature. 2002 Oct 10;419(6907):580-1 [PMID: 12374969]
  9. Atmos Meas Tech. 2016 Apr;9(4):1587-1599 [PMID: 32818045]
  10. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5804-11 [PMID: 26921324]
  11. Atmos Meas Tech. 2017;10(6):2105-2116 [PMID: 29098040]
  12. Proc Natl Acad Sci U S A. 2017 May 9;114(19):4899-4904 [PMID: 28446614]
  13. Nature. 2004 Dec 23;432(7020):1014-7 [PMID: 15616559]
  14. Nature. 2013 Nov 7;503(7474):67-71 [PMID: 24201280]
  15. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5828-34 [PMID: 26944081]

Word Cloud

Created with Highcharts 10.0.0NcloudretrievalsuncertaintydropletrimproveeffectiveCurrentsatelliteinferreduncertaintieserrorsstudiesobservationsbetterexistingdatadiscussedusepassiveinstrumentsnumberconcentrationcentralinterestunderstandingphysicsquantifyingradiativeforcingaerosol-cloudinteractionsstandardoperationallyprovidecanopticaldepthτradiustoptemperaturereviewsummarizesissuesapproachquantifiestotalrelative78%pixel-levelrelativelyhomogeneousopticallythickunobscuredstratiformcloudsfavorableviewinggeometryevengreaterconditionsmetaverages×1° regionsreduced54%assumingrandominstrumentcontrastevaluationreferencesitusuggestmuchaccuracylittlevariabilitybiasrequirederrorcharacterizationdominatedthereforeimprovementsgreatlyqualityRecommendationsmademightachievedsetscomparedbestpracticescurrentegfilteringcriteriarecommendedEmergingalternativeestimatesalsoconsideredFirstnewideasadditionalinformationupcomingspacebornesecondapproachesusinghigh-qualityground-basedexaminedRemoteSensingDropletNumberConcentrationWarmClouds:ReviewStateKnowledgePerspectivesconcentrationslidarradarremotesensing

Similar Articles

Cited By