New Insight into Pseudo-Thermal Convection in Vibrofluidised Granular Systems.

C R K Windows-Yule, E Lanchester, D Madkins, D J Parker
Author Information
  1. C R K Windows-Yule: School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. windowsyule@gmail.com.
  2. E Lanchester: School of Physics and Astronomy, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
  3. D Madkins: School of Physics and Astronomy, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
  4. D J Parker: School of Physics and Astronomy, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Abstract

Utilising a combination of experimental results obtained via positron emission particle tracking (PEPT) and numerical simulations, we study the influence of a system's geometric and elastic properties on the convective behaviours of a dilute, vibrofluidised granular assembly. Through the use of a novel, 'modular' system geometry, we demonstrate the existence of several previously undocumented convection-inducing mechanisms and compare their relative strengths across a broad, multi-dimensional parameter space, providing criteria through which the dominant mechanism within a given system - and hence its expected dynamics - may be predicted. We demonstrate a range of manners through which the manipulation of a system's geometry, material properties and imposed motion may be exploited in order to induce, suppress, strengthen, weaken or even invert granular convection. The sum of our results demonstrates that boundary-layer effects due to wall (in)elasticity or directional impulses due to 'rough' boundaries exert only a secondary influence on the system's behaviour. Rather, the direction and strength of convective motion is predominantly determined by the energy flux in the vicinity of the system's lateral boundaries, demonstrating unequivocally that pseudo-thermal granular convection is decidedly a collective phenomenon.

References

  1. Phys Rev Lett. 1987 Mar 9;58(10):1038-1040 [PMID: 10034316]
  2. Phys Rev Lett. 1992 Aug 31;69(9):1371-1374 [PMID: 10047200]
  3. Nature. 2001 Nov 15;414(6861):270 [PMID: 11713519]
  4. Phys Rev Lett. 2013 Jul 19;111(3):038001 [PMID: 23909362]
  5. Phys Rev Lett. 1993 Mar 15;70(11):1619-1622 [PMID: 10053341]
  6. Phys Rev Lett. 2017 May 26;118(21):218001 [PMID: 28598648]
  7. Phys Rev Lett. 2001 Apr 9;86(15):3304-7 [PMID: 11327956]
  8. Phys Rev Lett. 2014 Mar 7;112(9):098001 [PMID: 24655279]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Oct;64(4 Pt 1):041303 [PMID: 11690017]
  10. Science. 1995 Mar 17;267(5204):1632-4 [PMID: 17808181]
  11. Phys Rev Lett. 2013 Jul 5;111(1):018001 [PMID: 23863027]
  12. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042201 [PMID: 24229161]
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052203 [PMID: 26066169]
  14. Phys Rev Lett. 2008 Feb 22;100(7):078002 [PMID: 18352597]
  15. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Nov;54(5):5726-5738 [PMID: 9965760]
  16. Science. 2007 May 18;316(5827):1011-4 [PMID: 17446355]
  17. Phys Rev Lett. 1995 Mar 20;74(12):2216-2219 [PMID: 10057872]
  18. Phys Rev Lett. 2002 Aug 5;89(6):064301 [PMID: 12190583]
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062205 [PMID: 25615083]
  20. Phys Rev Lett. 2000 Aug 7;85(6):1230-3 [PMID: 10991519]
  21. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022202 [PMID: 25353462]
  22. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042202 [PMID: 25974479]
  23. Phys Rev Lett. 1993 Jun 14;70(24):3728-3731 [PMID: 10053947]
  24. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Sep;62(3 Pt B):3826-35 [PMID: 11088900]
  25. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Jul;54(1):874-883 [PMID: 9965135]
  26. Phys Rev Lett. 2016 Aug 26;117(9):098006 [PMID: 27610891]
  27. Phys Rev Lett. 2010 Jan 22;104(3):038001 [PMID: 20366684]
  28. Phys Rev Lett. 1995 Sep 18;75(12):2328-2331 [PMID: 10059276]
  29. Chaos. 1999 Sep;9(3):673-681 [PMID: 12779863]
  30. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Dec;60(6 Pt B):6890-6 [PMID: 11970627]

Word Cloud

Created with Highcharts 10.0.0system'sgranularresultsinfluencepropertiesconvectivesystemgeometrydemonstrate-maymotionconvectiondueboundariesUtilisingcombinationexperimentalobtainedviapositronemissionparticletrackingPEPTnumericalsimulationsstudygeometricelasticbehavioursdilutevibrofluidisedassemblyusenovel'modular'existenceseveralpreviouslyundocumentedconvection-inducingmechanismscomparerelativestrengthsacrossbroadmulti-dimensionalparameterspaceprovidingcriteriadominantmechanismwithingivenhenceexpecteddynamicspredictedrangemannersmanipulationmaterialimposedexploitedorderinducesuppressstrengthenweakeneveninvertsumdemonstratesboundary-layereffectswallelasticitydirectionalimpulses'rough'exertsecondarybehaviourRatherdirectionstrengthpredominantlydeterminedenergyfluxvicinitylateraldemonstratingunequivocallypseudo-thermaldecidedlycollectivephenomenonNewInsightPseudo-ThermalConvectionVibrofluidisedGranularSystems

Similar Articles

Cited By (1)