Muscle transcriptome resource for growth, lipid metabolism and immune system in Hilsa shad, Tenualosa ilisha.

B K Divya, Vindhya Mohindra, Rajeev K Singh, Prabhaker Yadav, Prachi Masih, J K Jena
Author Information
  1. B K Divya: ICAR- National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P. O. Dilkusha, Lucknow, Uttar Pradesh, 226002, India.
  2. Vindhya Mohindra: ICAR- National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P. O. Dilkusha, Lucknow, Uttar Pradesh, 226002, India. vindhyamohindra@gmail.com.
  3. Rajeev K Singh: ICAR- National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P. O. Dilkusha, Lucknow, Uttar Pradesh, 226002, India.
  4. Prabhaker Yadav: ICAR- National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P. O. Dilkusha, Lucknow, Uttar Pradesh, 226002, India.
  5. Prachi Masih: ICAR- National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P. O. Dilkusha, Lucknow, Uttar Pradesh, 226002, India.
  6. J K Jena: ICAR- National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P. O. Dilkusha, Lucknow, Uttar Pradesh, 226002, India.

Abstract

The information on the genes involved in muscle growth, lipid metabolism and immune systems would help to understand the mechanisms during the spawning migration in Hilsa shad, which in turn would be useful in its future domestication process. The primary objective of this study was to generate the transcriptome profile of its muscle through RNA seq. The total RNA was isolated and library was prepared from muscle tissue of Tenualosa ilisha, which was collected from Padma River at Farakka, India. The prepared library was then sequenced by Illumina HiSeq platform, HiSeq 2000, using paired-end strategy. A total of 8.68 GB of pair-end reads of muscle transcriptome was generated, and 43,384,267 pair-end reads were assembled into 3,04,233 contigs, of which 23.99% of assembled contigs has length ≥ 150 bp. The total GO terms were categorised into cellular component, molecular function and biological process through PANTHER database. Fifty-three genes related to muscle growth were identified and genes in different pathways were: 75 in PI3/AKT, 46 in mTOR, 76 in MAPK signalling, 24 in Janus kinase-signal transducer and activator of transcription, 45 in AMPK and 27 in cGMP pathways. This study also mined the genes involved in lipid metabolism, in which glycerophospholipid metabolism contained highest number of genes (32) and four were found to be involved in fatty acid biosynthesis. There were 58 immune related genes found, in which 31 were under innate and 27 under adaptive immunity. The present study included a large genomic resource of T. ilisha muscle generated through RNAseq, which revealed the essential dataset for our understanding of regulatory processes, specifically during the seasonal spawning migration. As Hilsa is a slow growing fish, the genes identified for muscle growth provided the basic information to study myogenesis. In addition, genes identified for lipid metabolism and immune system would provide resources for lipid synthesis and understanding of Hilsa defense mechanisms, respectively.

Keywords

References

  1. Immunol Lett. 2012 Nov-Dec;148(1):23-33 [PMID: 22902399]
  2. Fish Physiol Biochem. 2016 Dec;42(6):1595-1607 [PMID: 27380381]
  3. Gen Comp Endocrinol. 2013 Oct 1;192:136-48 [PMID: 23791761]
  4. Nat Cell Biol. 2001 Nov;3(11):1009-13 [PMID: 11715022]
  5. Trends Cell Biol. 2016 Mar;26(3):190-201 [PMID: 26616193]
  6. PLoS One. 2017 May 15;12(5):e0177679 [PMID: 28505179]
  7. J Exp Biol. 2012 Aug 1;215(Pt 15):2567-78 [PMID: 22786633]
  8. Nat Rev Genet. 2011 Feb;12(2):87-98 [PMID: 21191423]
  9. Annu Rev Biochem. 2006;75:19-37 [PMID: 16756483]
  10. Gene. 2012 Jul 1;502(1):53-9 [PMID: 22543004]
  11. BMC Evol Biol. 2016 Sep 01;16:175 [PMID: 27586387]
  12. Dev Cell. 2014 Feb 10;28(3):225-38 [PMID: 24525185]
  13. Dev Comp Immunol. 2005;29(6):501-13 [PMID: 15752547]
  14. Appl Microbiol Biotechnol. 2011 May;90(4):1429-41 [PMID: 21431397]
  15. Physiol Rep. 2013 Oct;1(5):e00120 [PMID: 24303187]
  16. Vet Immunol Immunopathol. 2000 Dec 29;77(3-4):163-76 [PMID: 11137116]
  17. J Biomed Semantics. 2015 Apr 11;6:17 [PMID: 25901272]
  18. PLoS One. 2013;8(1):e53299 [PMID: 23341937]
  19. Fish Physiol Biochem. 2017 Apr;43(2):493-516 [PMID: 27815797]
  20. FEBS J. 2013 Sep;280(17):4294-314 [PMID: 23517348]
  21. Biomed Res Int. 2016;2016:4027437 [PMID: 27579313]
  22. Biochim Biophys Acta. 2011 Nov;1810(11):1052-8 [PMID: 21596099]
  23. BMC Genomics. 2010 Jul 05;11:418 [PMID: 20602791]
  24. Int Immunol. 2007 Dec;19(12):1361-70 [PMID: 17965450]
  25. Sci Rep. 2016 Dec 09;6:38716 [PMID: 27934965]
  26. FASEB J. 1995 Jun;9(9):718-25 [PMID: 7601336]
  27. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 [PMID: 17526522]
  28. Mol Immunol. 2010 Aug;47(14):2330-41 [PMID: 20627394]
  29. J Oleo Sci. 2015;64(6):603-16 [PMID: 26028326]
  30. Cell Stem Cell. 2009 Jun 5;4(6):535-47 [PMID: 19497282]
  31. Front Zool. 2009 Aug 24;6:18 [PMID: 19703292]
  32. J Exp Biol. 2012 Apr 15;215(Pt 8):1373-83 [PMID: 22442376]
  33. PLoS One. 2014 Aug 20;9(8):e105548 [PMID: 25141351]
  34. J Exp Biol. 2011 May 15;214(Pt 10):1617-28 [PMID: 21525308]
  35. BMC Genomics. 2016 Oct 18;17(1):810 [PMID: 27756225]
  36. Cell Metab. 2006 May;3(5):309-19 [PMID: 16679289]
  37. Mol Cell Biol. 2014 Nov 15;34(22):4088-103 [PMID: 25182533]
  38. Comp Biochem Physiol A Mol Integr Physiol. 2002 Aug;132(4):913-9 [PMID: 12095871]
  39. Cell. 2010 Mar 19;140(6):935-50 [PMID: 20303881]
  40. Dis Model Mech. 2016 Jun 1;9(6):697-705 [PMID: 27101844]
  41. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  42. Mol Ecol. 2016 Feb;25(4):943-58 [PMID: 26749022]
  43. ScientificWorldJournal. 2012;2012:254962 [PMID: 22262952]
  44. Nucleic Acids Res. 2016 Jan 4;44(D1):D336-42 [PMID: 26578592]
  45. Dev Comp Immunol. 2011 Dec;35(12):1336-45 [PMID: 21605591]
  46. Cancer Immunol Immunother. 2014 Nov;63(11):1129-40 [PMID: 25038892]
  47. Fish Shellfish Immunol. 2007 Sep;23(3):693-700 [PMID: 17349804]
  48. Stem Cells. 2010 Oct;28(10):1816-28 [PMID: 20979137]

MeSH Term

Animals
Fish Proteins
Fishes
Gene Expression Profiling
Immunity
Lipid Metabolism
Muscle Development
Muscle, Skeletal
Signal Transduction
Transcriptome

Chemicals

Fish Proteins

Word Cloud

Created with Highcharts 10.0.0genesmusclelipidmetabolismgrowthimmunestudytranscriptometotalilishacontigsidentifiedHilsainformationinvolvedmechanismsspawningmigrationprocessRNAlibrarypreparedTenualosaHiSeqpair-endreadsassembledrelatedpathwaysPI3/AKT27foundacidresourceunderstandingsystemthe genessystemshelpunderstandHilsa shadturnusefulfuturedomesticationprimaryobjectivegenerateprofileits muscleseqisolatedtissuecollectedPadmaRiverFarakkaIndiasequencedIlluminaplatform2000usingpaired-endstrategy868 GBgeneratedand 433842673042332399%length ≥ 150 bpGOtermscategorisedcellularcomponentmolecularfunctionbiologicalPANTHERdatabaseFifty-threedifferentwere:7546mTOR76MAPKsignalling24Januskinase-signaltransduceractivatortranscription45AMPKcGMPalsominedglycerophospholipidcontainedhighestnumber32four werebe involvedfattybiosynthesis5831innateadaptiveimmunitypresentincludeda largegenomicTgenerated throughRNAseqrevealedessentialdatasetregulatoryprocessesspecificallyseasonalslowgrowingfishprovidedbasicmyogenesisadditionprovideresourcessynthesisdefenserespectivelyMuscleshadAdaptiveFattyFunctionalImmunityInnate

Similar Articles

Cited By