AbmR (Rv1265) is a novel transcription factor of Mycobacterium tuberculosis that regulates host cell association and expression of the non-coding small RNA Mcr11.

Roxie C Girardin, Guangchun Bai, Jie He, Haixin Sui, Kathleen A McDonough
Author Information
  1. Roxie C Girardin: Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA.
  2. Guangchun Bai: Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA. ORCID
  3. Jie He: Wadsworth Center, New York State Department of Health, Albany, NY, USA.
  4. Haixin Sui: Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA.
  5. Kathleen A McDonough: Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA. ORCID

Abstract

Gene regulatory networks used by Mycobacterium tuberculosis (Mtb) during infection include many genes of unknown function, confounding efforts to determine their roles in Mtb biology. Rv1265 encodes a conserved hypothetical protein that is expressed during infection and in response to elevated levels of cyclic AMP. Here, we report that Rv1265 is a novel auto-inhibitory ATP-binding transcription factor that upregulates expression of the small non-coding RNA Mcr11, and propose that Rv1265 be named ATP-binding mcr11 regulator (AbmR). AbmR directly and specifically bound DNA, as determined by electrophoretic mobility shift assays, and this DNA-binding activity was enhanced by AbmR's interaction with ATP. Genetic knockout of abmR in Mtb increased abmR promoter activity and eliminated growth phase-dependent increases in mcr11 expression during hypoxia. Mutagenesis identified arginine residues in the carboxy terminus that are critical for AbmR's DNA-binding activity and gene regulatory function. Limited similarity to other DNA- or ATP-binding domains suggests that AbmR belongs to a novel class of DNA- and ATP-binding proteins. AbmR was also found to form large organized structures in solution and facilitate the serum-dependent association of Mtb with human lung epithelial cells. These results indicate a potentially complex role for AbmR in Mtb biology.

References

  1. PLoS One. 2012;7(4):e34302 [PMID: 22485162]
  2. Infect Immun. 2008 Jun;76(6):2478-89 [PMID: 18391009]
  3. EMBO J. 1998 Dec 15;17(24):7404-15 [PMID: 9857196]
  4. Nat Protoc. 2009;4(3):363-71 [PMID: 19247286]
  5. Sci Rep. 2016 May 16;6:25851 [PMID: 27181265]
  6. Tuberculosis (Edinb). 2004;84(3-4):218-27 [PMID: 15207491]
  7. Nucleic Acids Res. 2010 Jul;38(12):4067-78 [PMID: 20181675]
  8. Nature. 2012 Jun 13;486(7402):271-5 [PMID: 22699622]
  9. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12989-94 [PMID: 14569030]
  10. Nature. 1998 Jun 11;393(6685):537-44 [PMID: 9634230]
  11. Mol Microbiol. 2004 Jan;51(1):175-88 [PMID: 14651620]
  12. Mol Microbiol. 2010 Dec;78(5):1199-215 [PMID: 21091505]
  13. Nat Rev Dis Primers. 2016 Oct 27;2:16076 [PMID: 27784885]
  14. PLoS Med. 2008 Apr 1;5(4):e75 [PMID: 18384229]
  15. J Bacteriol. 2005 Apr;187(8):2681-92 [PMID: 15805514]
  16. Nature. 2009 Jul 2;460(7251):98-102 [PMID: 19516256]
  17. Mol Cell Proteomics. 2013 Jun;12(6):1644-60 [PMID: 23462205]
  18. J Exp Med. 2003 Sep 1;198(5):693-704 [PMID: 12953091]
  19. Microbiology. 2010 Jan;156(Pt 1):81-7 [PMID: 19797356]
  20. Microbes Infect. 2003 Jun;5(7):677-84 [PMID: 12787744]
  21. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  22. Tuberculosis (Edinb). 2013 Jan;93(1):40-6 [PMID: 23287603]
  23. Subcell Biochem. 2011;52:7-23 [PMID: 21557077]
  24. Mol Cell Proteomics. 2003 Dec;2(12):1284-96 [PMID: 14532352]
  25. Microb Pathog. 2003 Sep;35(3):125-31 [PMID: 12927520]
  26. J Exp Med. 1996 Sep 1;184(3):993-1001 [PMID: 9064359]
  27. Mol Microbiol. 2005 Jun;56(5):1274-86 [PMID: 15882420]
  28. Mol Cell. 2002 Jan;9(1):11-22 [PMID: 11804582]
  29. Microbiology. 2002 Oct;148(Pt 10):2967-73 [PMID: 12368430]
  30. J Biomol Struct Dyn. 2016;34(3):585-99 [PMID: 26156642]
  31. Mol Microbiol. 2002 Feb;43(3):717-31 [PMID: 11929527]
  32. Mol Microbiol. 2011 Oct;82(1):180-98 [PMID: 21902733]
  33. J Biol Chem. 2013 May 17;288(20):14114-24 [PMID: 23553634]
  34. Am J Respir Cell Mol Biol. 1996 Dec;15(6):760-70 [PMID: 8969271]
  35. BMC Genomics. 2015 Nov 16;16:954 [PMID: 26573524]
  36. J Mol Biol. 2011 May 27;409(1):14-27 [PMID: 21392509]
  37. Nucleic Acids Res. 2015 Jun 23;43(11):5377-93 [PMID: 25940627]
  38. Mol Microbiol. 2017 Jul;105(2):294-308 [PMID: 28464471]
  39. J Exp Med. 1992 Apr 1;175(4):1111-22 [PMID: 1552282]
  40. Infect Immun. 1996 Jun;64(6):2062-9 [PMID: 8675308]
  41. MBio. 2013 Dec 31;5(1):e00744-13 [PMID: 24381303]
  42. Am J Respir Crit Care Med. 2015 May 15;191(10):1185-96 [PMID: 25730547]
  43. Braz J Infect Dis. 2016 Mar-Apr;20(2):160-5 [PMID: 26748229]
  44. PLoS Pathog. 2011 Nov;7(11):e1002342 [PMID: 22072964]
  45. Infect Immun. 2008 Jun;76(6):2333-40 [PMID: 18347040]
  46. Tuberculosis (Edinb). 2002;82(1):31-6 [PMID: 11914060]
  47. Antioxid Redox Signal. 2012 Apr 15;16(8):819-52 [PMID: 22098259]
  48. Nucleic Acids Res. 2016 Jan 8;44(1):134-51 [PMID: 26358810]
  49. Nat Rev Microbiol. 2007 Sep;5(9):710-20 [PMID: 17676053]
  50. FEMS Immunol Med Microbiol. 2009 Jan;55(1):68-73 [PMID: 19076221]
  51. Cell Rep. 2013 Nov 27;5(4):1121-31 [PMID: 24268774]
  52. Microbes Infect. 2006 Jan;8(1):1-9 [PMID: 15914062]
  53. PLoS One. 2012;7(4):e35847 [PMID: 22563409]
  54. J Bacteriol. 2016 Apr 14;198(9):1360-73 [PMID: 26883824]
  55. PLoS Pathog. 2009 May;5(5):e1000460 [PMID: 19478878]
  56. Nucleic Acids Res. 2017 Jun 20;45(11):6600-6612 [PMID: 28482027]
  57. J Bacteriol. 2005 Nov;187(22):7795-804 [PMID: 16267303]
  58. Annu Rev Microbiol. 2001;55:139-63 [PMID: 11544352]
  59. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15629-34 [PMID: 16227431]
  60. Tuberculosis (Edinb). 2011 Jan;91(1):1-7 [PMID: 20980199]
  61. Biochem Biophys Res Commun. 2007 Mar 30;355(1):162-8 [PMID: 17286964]
  62. BMC Microbiol. 2010 Apr 29;10:132 [PMID: 20429878]
  63. Mol Microbiol. 2009 Aug;73(3):397-408 [PMID: 19555452]
  64. Microbiology. 2002 May;148(Pt 5):1571-9 [PMID: 11988532]
  65. Infect Immun. 1995 Dec;63(12):4802-11 [PMID: 7591139]
  66. PLoS One. 2015 Aug 13;10(8):e0135208 [PMID: 26270051]
  67. Nat Commun. 2014 Feb 26;5:3369 [PMID: 24569628]
  68. Int J Mol Sci. 2012;13(6):7283-302 [PMID: 22837694]
  69. Nucleic Acids Res. 2014 Jul;42(13):8320-9 [PMID: 24957601]
  70. Microbes Infect. 2001 Jan;3(1):37-42 [PMID: 11226852]
  71. Biophys J. 2000 Mar;78(3):1606-19 [PMID: 10692345]
  72. J Bacteriol. 2004 Mar;186(5):1311-9 [PMID: 14973045]
  73. Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11945-50 [PMID: 18697942]
  74. J Immunol. 1993 Apr 1;150(7):2920-30 [PMID: 8454864]
  75. Nat Rev Mol Cell Biol. 2014 Nov;15(11):749-60 [PMID: 25269475]
  76. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W243-8 [PMID: 16845003]
  77. Microbiology. 2002 Oct;148(Pt 10):3007-17 [PMID: 12368434]
  78. J Biol Chem. 2010 Sep 17;285(38):29239-46 [PMID: 20630871]
  79. J Proteomics. 2011 Dec 21;75(2):502-10 [PMID: 21920479]
  80. Chem Biol. 2013 Jan 24;20(1):123-33 [PMID: 23352146]
  81. Gene. 2012 May 25;500(1):85-92 [PMID: 22446041]
  82. J Microbiol. 2016 Aug;54(8):565-72 [PMID: 27480637]
  83. J Biol Chem. 2004 Sep 17;279(38):39798-806 [PMID: 15234978]
  84. Mol Microbiol. 2009 Jan;71(2):434-48 [PMID: 19040643]
  85. PLoS One. 2016 Mar 22;11(3):e0152145 [PMID: 27003599]
  86. Mol Cell Proteomics. 2017 Aug;16(8):1491-1506 [PMID: 28572091]
  87. Mol Microbiol. 2003 Apr;48(1):77-84 [PMID: 12657046]
  88. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7213-8 [PMID: 12775759]
  89. Mol Microbiol. 2014 Sep;93(5):1057-1065 [PMID: 25039394]
  90. Front Microbiol. 2016 Aug 31;7:1346 [PMID: 27630619]
  91. Science. 1997 Aug 22;277(5329):1091-3 [PMID: 9262476]
  92. Cell Microbiol. 2006 Feb;8(2):218-32 [PMID: 16441433]
  93. Nature. 2013 Jul 11;499(7457):178-83 [PMID: 23823726]
  94. Infect Immun. 2001 Sep;69(9):5777-85 [PMID: 11500455]
  95. Nature. 2001 Jul 12;412(6843):190-4 [PMID: 11449276]
  96. J Gen Microbiol. 1979 Feb;110(2):431-41 [PMID: 220379]
  97. Science. 2005 May 13;308(5724):1020-3 [PMID: 15890882]
  98. Nucleic Acids Res. 2008 Apr;36(7):2123-35 [PMID: 18187505]
  99. Infect Immun. 1993 Jul;61(7):2763-73 [PMID: 8514378]
  100. Infect Immun. 2002 Dec;70(12):6751-60 [PMID: 12438350]
  101. Mol Microbiol. 2006 Sep;61(5):1352-61 [PMID: 16925562]
  102. FEBS J. 2009 Jul;276(13):3428-39 [PMID: 19456862]

Grants

  1. R01 AI045658/NIAID NIH HHS
  2. R01 AI063499/NIAID NIH HHS
  3. T32 AI055429/NIAID NIH HHS

MeSH Term

Bacterial Adhesion
Bacterial Proteins
Carrier Proteins
Gene Expression Regulation, Bacterial
Gene Regulatory Networks
Genes, Regulator
Mycobacterium tuberculosis
Promoter Regions, Genetic
Protein Binding
RNA, Small Untranslated
Transcription Factors

Chemicals

ATP-binding protein, bacteria
Bacterial Proteins
Carrier Proteins
RNA, Small Untranslated
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0AbmRMtbRv1265ATP-bindingnovelexpressionactivityregulatoryMycobacteriumtuberculosisinfectionfunctionbiologytranscriptionfactorsmallnon-codingRNAMcr11mcr11DNA-bindingAbmR'sabmRDNA-associationGenenetworksusedincludemanygenesunknownconfoundingeffortsdeterminerolesencodesconservedhypotheticalproteinexpressedresponseelevatedlevelscyclicAMPreportauto-inhibitoryupregulatesproposenamedregulatordirectlyspecificallyboundDNAdeterminedelectrophoreticmobilityshiftassaysenhancedinteractionATPGeneticknockoutincreasedpromotereliminatedgrowthphase-dependentincreaseshypoxiaMutagenesisidentifiedarginineresiduescarboxyterminuscriticalgeneLimitedsimilaritydomainssuggestsbelongsclassproteinsalsofoundformlargeorganizedstructuressolutionfacilitateserum-dependenthumanlungepithelialcellsresultsindicatepotentiallycomplexroleregulateshostcell

Similar Articles

Cited By