Overcoming the Cost of Positive Autoregulation by Accelerating the Response with a Coupled Negative Feedback.

Rong Gao, Ann M Stock
Author Information
  1. Rong Gao: Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
  2. Ann M Stock: Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA. Electronic address: stock@cabm.rutgers.edu.

Abstract

A fundamental trade-off between rapid response and optimal expression of genes below cytotoxic levels exists for many signaling circuits, particularly for positively autoregulated systems with an inherent response delay. Here, we describe a regulatory scheme in the E. coli PhoB-PhoR two-component system, which overcomes the cost of positive feedback and achieves both fast and optimal steady-state response for maximal fitness across different environments. Quantitation of the cellular activities enables accurate modeling of the response dynamics to describe how requirements for optimal protein concentrations place limits on response speed. An observed fast response that exceeds the limit led to the prediction and discovery of a coupled negative autoregulation, which allows fast gene expression without increasing steady-state levels. We demonstrate the fitness advantages for the coupled feedbacks in both dynamic and stable environments. Such regulatory schemes offer great flexibility for accurate control of gene expression levels and dynamics upon environmental changes.

Keywords

References

  1. Nat Commun. 2013;4:2605 [PMID: 24189549]
  2. Curr Opin Microbiol. 2015 Apr;24:7-14 [PMID: 25589045]
  3. PLoS Genet. 2009 Dec;5(12):e1000788 [PMID: 20041203]
  4. Nucleic Acids Res. 2015 Jul 1;43(W1):W50-6 [PMID: 25904632]
  5. PLoS Biol. 2012 Jan;10(1):e1001252 [PMID: 22303282]
  6. PLoS Comput Biol. 2011 Nov;7(11):e1002265 [PMID: 22125482]
  7. Mol Cell. 2013 Jan 24;49(2):202-12 [PMID: 23352241]
  8. Nature. 1974 Dec 13;252(5484):546-9 [PMID: 4431516]
  9. Annu Rev Microbiol. 2016 Sep 8;70:103-24 [PMID: 27607549]
  10. Nucleic Acids Res. 2016 Jan 4;44(D1):D133-43 [PMID: 26527724]
  11. Structure. 2002 May;10(5):701-13 [PMID: 12015152]
  12. Nucleic Acids Res. 2007;35(20):6935-52 [PMID: 17933763]
  13. Mol Syst Biol. 2010 Dec 21;6:452 [PMID: 21179024]
  14. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):691-6 [PMID: 12522261]
  15. Science. 2007 May 25;316(5828):1191-4 [PMID: 17525339]
  16. MBio. 2014 Oct 07;5(5):e01485-14 [PMID: 25293763]
  17. Cell. 2016 Aug 25;166(5):1282-1294.e18 [PMID: 27545349]
  18. Nature. 2003 Nov 27;426(6965):460-5 [PMID: 14647386]
  19. MBio. 2017 May 16;8(3): [PMID: 28512092]
  20. J Mol Biol. 2006 Jun 16;359(4):1107-24 [PMID: 16701695]
  21. Phys Biol. 2012 Oct;9(5):055003 [PMID: 23011599]
  22. Annu Rev Microbiol. 2009;63:133-54 [PMID: 19575571]
  23. Math Biosci. 2011 May;231(1):76-89 [PMID: 21385588]
  24. PLoS Comput Biol. 2010 Jun 10;6(6):e1000813 [PMID: 20548950]
  25. Nat Rev Genet. 2004 Jan;5(1):34-42 [PMID: 14708014]
  26. Nat Rev Genet. 2007 Jun;8(6):450-61 [PMID: 17510665]
  27. Cell. 2012 Dec 21;151(7):1569-80 [PMID: 23260143]
  28. Structure. 2015 Jun 2;23(6):981-94 [PMID: 25982528]
  29. J Bacteriol. 1999 Sep;181(17):5263-72 [PMID: 10464196]
  30. Mol Cell. 2012 Feb 10;45(3):409-21 [PMID: 22325356]
  31. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17457-62 [PMID: 18987315]
  32. Nat Genet. 2002 May;31(1):64-8 [PMID: 11967538]
  33. Curr Opin Microbiol. 2010 Apr;13(2):184-9 [PMID: 20149717]
  34. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  35. J Mol Biol. 2008 Aug 1;381(1):238-47 [PMID: 18599074]
  36. J Biol Chem. 2002 Jul 19;277(29):26652-61 [PMID: 11953442]
  37. PLoS One. 2012;7(10):e47314 [PMID: 23071782]
  38. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 [PMID: 19458158]
  39. J Mol Biol. 2003 Jun 13;329(4):645-54 [PMID: 12787666]
  40. Biol Chem. 2012 Sep 08;393(10):1165-71 [PMID: 23096352]
  41. J Bacteriol. 2011 Dec;193(24):6929-38 [PMID: 21984792]
  42. Cell. 2015 Jul 16;162(2):328-337 [PMID: 26165942]
  43. Biophys J. 2008 Jan 15;94(2):359-65 [PMID: 17951298]
  44. J Mol Biol. 2009 Jun 5;389(2):349-64 [PMID: 19371748]
  45. Nucleic Acids Res. 2016 Dec 15;44(22):10530-10538 [PMID: 27899598]
  46. Genes Dev. 2008 Jan 15;22(2):226-38 [PMID: 18198339]
  47. J Mol Biol. 1988 Sep 5;203(1):85-95 [PMID: 3054125]
  48. Mol Microbiol. 2016 Nov;102(3):430-445 [PMID: 27447896]
  49. Biophys J. 2009 Feb;96(3):887-906 [PMID: 19186128]
  50. J Mol Biol. 2002 Nov 8;323(5):785-93 [PMID: 12417193]
  51. J Bacteriol. 2017 Aug 22;199(18): [PMID: 28674072]
  52. Mol Microbiol. 2012 May;84(3):463-85 [PMID: 22435712]
  53. J Bacteriol. 1997 Jun;179(11):3790-2 [PMID: 9171432]
  54. Bioessays. 2008 Jun;30(6):542-55 [PMID: 18478531]
  55. PLoS Genet. 2013 Oct;9(10):e1003927 [PMID: 24204322]
  56. Methods Enzymol. 2007;423:458-75 [PMID: 17609146]
  57. J Mol Biol. 2010 Aug 27;401(4):671-80 [PMID: 20600106]
  58. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):672-7 [PMID: 23267085]
  59. Biochemistry. 2013 Nov 19;52(46):8177-86 [PMID: 24199636]
  60. J Bacteriol. 2001 Nov;183(21):6384-93 [PMID: 11591683]
  61. MBio. 2015 May 26;6(3):e00686-15 [PMID: 26015501]
  62. Trends Genet. 2012 May;28(5):221-32 [PMID: 22365642]
  63. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  64. J Bacteriol. 1974 Sep;119(3):736-47 [PMID: 4604283]
  65. PLoS Comput Biol. 2010 Feb 12;6(2):e1000676 [PMID: 20168997]
  66. Mol Microbiol. 2002 Dec;46(5):1247-57 [PMID: 12453212]
  67. Microbiology. 2004 Sep;150(Pt 9):2985-92 [PMID: 15347756]

Grants

  1. R01 GM047958/NIGMS NIH HHS

MeSH Term

Escherichia coli
Escherichia coli Proteins
Gene Expression Regulation, Bacterial
Homeostasis
Promoter Regions, Genetic
Signal Transduction

Chemicals

Escherichia coli Proteins

Word Cloud

Created with Highcharts 10.0.0responsefeedbackoptimalexpressionlevelsfastfitnessdynamicscoupleddescriberegulatorytwo-componentsystempositivesteady-stateenvironmentsaccuratenegativeautoregulationgenefundamentaltrade-offrapidgenescytotoxicexistsmanysignalingcircuitsparticularlypositivelyautoregulatedsystemsinherentdelayschemeE coliPhoB-PhoRovercomescostachievesmaximalacrossdifferentQuantitationcellularactivitiesenablesmodelingrequirementsproteinconcentrationsplacelimitsspeedobservedexceedslimitledpredictiondiscoveryallowswithoutincreasingdemonstrateadvantagesfeedbacksdynamicstableschemesoffergreatflexibilitycontroluponenvironmentalchangesOvercomingCostPositiveAutoregulationAcceleratingResponseCoupledNegativeFeedbackDNA-bindingaffinitypromoterarchitecturetranscriptiondualregulation

Similar Articles

Cited By (16)