Electronic Resonant Stimulated Raman Scattering Micro-Spectroscopy.

Lixue Shi, Hanqing Xiong, Yihui Shen, Rong Long, Lu Wei, Wei Min
Author Information
  1. Lixue Shi: Department of Chemistry , Columbia University , New York , New York 10027 , United States.
  2. Hanqing Xiong: Department of Chemistry , Columbia University , New York , New York 10027 , United States.
  3. Yihui Shen: Department of Chemistry , Columbia University , New York , New York 10027 , United States.
  4. Rong Long: Department of Chemistry , Columbia University , New York , New York 10027 , United States.
  5. Lu Wei: Department of Chemistry , Columbia University , New York , New York 10027 , United States.
  6. Wei Min: Department of Chemistry , Columbia University , New York , New York 10027 , United States. ORCID

Abstract

Recently we have reported electronic pre-resonance stimulated Raman scattering (epr-SRS) microscopy as a powerful technique for super-multiplex imaging ( Wei, L. ; Nature 2017 , 544 , 465 - 470 ). However, under rigorous electronic resonance, background signal, which mainly originates from pump-probe process, overwhelms the desired vibrational signature of the chromophores. Here we demonstrate electronic resonant stimulated Raman scattering (er-SRS) microspectroscopy and imaging through suppression of electronic background and subsequent retrieval of vibrational peaks. We observed a change of the vibrational band shapes from normal Lorentzian, through dispersive shapes, to inverted Lorentzian as the electronic resonance was approached, in agreement with theoretical prediction. In addition, resonant Raman cross sections have been determined after power-dependence study as well as Raman excitation profile calculation. As large as 10 cm of resonance Raman cross section is estimated in er-SRS, which is about 100 times higher than previously reported in epr-SRS. These results of er-SRS microspectroscopy pave the way for the single-molecule Raman detection and ultrasensitive biological imaging.

References

  1. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  2. J Am Chem Soc. 2012 Mar 21;134(11):5029-31 [PMID: 22390359]
  3. Chemphyschem. 2008 Apr 4;9(5):697-9 [PMID: 18330856]
  4. Science. 1997 Feb 21;275(5303):1102-6 [PMID: 9027306]
  5. J Am Chem Soc. 2014 Jun 4;136(22):8027-33 [PMID: 24849912]
  6. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3798-802 [PMID: 1069264]
  7. Anal Chem. 2014 Aug 5;86(15):7782-7 [PMID: 24975056]
  8. Rev Sci Instrum. 2016 Mar;87(3):031101 [PMID: 27036751]
  9. J Chem Phys. 2008 Aug 14;129(6):064507 [PMID: 18715085]
  10. Photochem Photobiol. 2009 May-Jun;85(3):631-45 [PMID: 19170931]
  11. Annu Rev Phys Chem. 1988;39:537-88 [PMID: 3075468]
  12. Science. 2010 Oct 15;330(6002):353-6 [PMID: 20947760]
  13. Acc Chem Res. 2014 Aug 19;47(8):2282-90 [PMID: 24871269]
  14. Chemphyschem. 2009 Feb 2;10(2):344-7 [PMID: 19115321]
  15. J Chem Phys. 2016 Sep 7;145(9):094106 [PMID: 27608988]
  16. Phys Med Biol. 1978 Jan;23(1):159-63 [PMID: 635011]
  17. J Phys Chem A. 2010 May 6;114(17):5515-9 [PMID: 20377210]
  18. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  19. Annu Rev Phys Chem. 2012;63:65-87 [PMID: 22224704]
  20. J Am Chem Soc. 2009 Jan 21;131(2):849-54 [PMID: 19140802]
  21. Theranostics. 2013 Aug 21;3(9):692-702 [PMID: 24019854]
  22. J Phys Chem Lett. 2018 Aug 2;9(15):4294-4301 [PMID: 30001137]
  23. Anal Chem. 1993 Feb 15;65(4):201A-210A [PMID: 8439006]
  24. Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4465-4470 [PMID: 29626132]
  25. J Phys Chem Lett. 2016 Nov 17;7(22):4629-4634 [PMID: 27802054]
  26. Chem Rev. 2017 Jun 14;117(11):7583-7613 [PMID: 28610424]
  27. Annu Rev Phys Chem. 2011;62:507-30 [PMID: 21453061]

Grants

  1. R01 EB020892/NIBIB NIH HHS
  2. R01 GM128214/NIGMS NIH HHS

MeSH Term

Coloring Agents
HeLa Cells
Humans
Indocyanine Green
Microscopy
Spectrum Analysis, Raman
Vibration

Chemicals

Coloring Agents
IR 820
Indocyanine Green

Word Cloud

Created with Highcharts 10.0.0Ramanelectronicimagingresonancevibrationaler-SRSreportedstimulatedscatteringepr-SRSbackgroundresonantmicrospectroscopyshapesLorentziancrossRecentlypre-resonancemicroscopypowerfultechniquesuper-multiplexWeiLNature2017544465-470Howeverrigoroussignalmainlyoriginatespump-probeprocessoverwhelmsdesiredsignaturechromophoresdemonstratesuppressionsubsequentretrievalpeaksobservedchangebandnormaldispersiveinvertedapproachedagreementtheoreticalpredictionadditionsectionsdeterminedpower-dependencestudywellexcitationprofilecalculationlarge10cmsectionestimated100timeshigherpreviouslyresultspavewaysingle-moleculedetectionultrasensitivebiologicalElectronicResonantStimulatedScatteringMicro-Spectroscopy

Similar Articles

Cited By (13)