A Method of HBase Multi-Conditional Query for Ubiquitous Sensing Applications.

Bo Shen, Yi-Chen Liao, Dan Liu, Han-Chieh Chao
Author Information
  1. Bo Shen: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China. bshen@bjtu.edu.cn.
  2. Yi-Chen Liao: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China. 14120201@bjtu.edu.cn.
  3. Dan Liu: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China. 16120093@bjtu.edu.cn.
  4. Han-Chieh Chao: School of Information Science and Engineering, Fujian University of Technology, Fuzhou 350118, China. hcc@niu.edu.tw.

Abstract

Big data gathered from real systems, such as public infrastructure, healthcare, smart homes, industries, and so on, by sensor networks contain enormous value, and need to be mined deeply, which depends on a data storing and retrieving service. HBase is playing an increasingly important part in the big data environment since it provides a flexible pattern for storing extremely large amounts of unstructured data. Despite the fast-speed reading by RowKey, HBase does not natively support multi-conditional query, which is a common demand and operation in relational databases, especially for data analysis of ubiquitous sensing applications. In this paper, we introduce a method to construct a linear index by employing a Hilbert space-filling curve. As a RowKey generating schema, the proposed method maps multiple index-columns into a one-dimensional encoded sequence, and then constructs a new RowKey. We also provide a -tree-based optimization to reduce the computational cost of encoding query conditions. Without using a secondary index mode, experimental results indicate that the proposed method has better performance in multi-conditional queries.

Keywords

References

  1. Sensors (Basel). 2018 May 29;18(6):null [PMID: 29844285]
  2. Sensors (Basel). 2018 Jul 19;18(7):null [PMID: 30029510]
  3. Sensors (Basel). 2017 Nov 06;17(11): [PMID: 29113142]
  4. Sensors (Basel). 2012 Dec 27;13(1):393-425 [PMID: 23271603]
  5. Sensors (Basel). 2018 Aug 03;18(8):null [PMID: 30081511]
  6. Sensors (Basel). 2013 Dec 16;13(12):17292-321 [PMID: 24351637]
  7. ScientificWorldJournal. 2014;2014:652329 [PMID: 25133250]
  8. J Med Syst. 2011 Oct;35(5):1245-54 [PMID: 21327950]
  9. Sensors (Basel). 2016 Feb 06;16(2):215 [PMID: 26861345]
  10. Sensors (Basel). 2016 Dec 09;16(12): [PMID: 27941704]
  11. Sensors (Basel). 2018 Mar 20;18(3):null [PMID: 29558433]
  12. Sensors (Basel). 2017 Jul 21;17(7): [PMID: 28754013]

Grants

  1. 2017YFC0840200/National Key Research and Development Program of China
  2. 2017JBZ107/Fundamental Research Funds for the Central Universities

Word Cloud

Created with Highcharts 10.0.0dataHBaseRowKeymulti-conditionalquerymethodstoringubiquitoussensingindexHilbertspace-fillingcurveproposedBiggatheredrealsystemspublicinfrastructurehealthcaresmarthomesindustriessensornetworkscontainenormousvalueneedmineddeeplydependsretrievingserviceplayingincreasinglyimportantpartbigenvironmentsinceprovidesflexiblepatternextremelylargeamountsunstructuredDespitefast-speedreadingnativelysupportcommondemandoperationrelationaldatabasesespeciallyanalysisapplicationspaperintroduceconstructlinearemployinggeneratingschemamapsmultipleindex-columnsone-dimensionalencodedsequenceconstructsnewalsoprovide-tree-basedoptimizationreducecomputationalcostencodingconditionsWithoutusingsecondarymodeexperimentalresultsindicatebetterperformancequeriesMethodMulti-ConditionalQueryUbiquitousSensingApplications

Similar Articles

Cited By

No available data.