DM-PhyClus: a Bayesian phylogenetic algorithm for infectious disease transmission cluster inference.

Luc Villandré, Aurélie Labbe, Bluma Brenner, Michel Roger, David A Stephens
Author Information
  1. Luc Villandré: Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, 1020 avenue des Pins Ouest, Montreal, H3A 1A2, QC, Canada. luc.villandre@mail.mcgill.ca. ORCID
  2. Aurélie Labbe: Department of Decision Science, HEC Montréal, 3000, chemin de la Côte-Sainte-Catherine, Montreal, H3T 2A7, QC, Canada.
  3. Bluma Brenner: McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 chemin de la Côte-Sainte-Catherine, Montreal, H3T 1E2, QC, Canada.
  4. Michel Roger: Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Pavillon R, Montreal, H2X 0A9, QC, Canada.
  5. David A Stephens: Department of Mathematics and Statistics, McGill University, 805 rue Sherbrooke Ouest, Montreal, H3A 0B9, QC, Canada.

Abstract

BACKGROUND: Conventional phylogenetic clustering approaches rely on arbitrary cutpoints applied a posteriori to phylogenetic estimates. Although in practice, Bayesian and bootstrap-based clustering tend to lead to similar estimates, they often produce conflicting measures of confidence in clusters. The current study proposes a new Bayesian phylogenetic clustering algorithm, which we refer to as DM-PhyClus (Dirichlet-Multinomial Phylogenetic Clustering), that identifies sets of sequences resulting from quick transmission chains, thus yielding easily-interpretable clusters, without using any ad hoc distance or confidence requirement.
RESULTS: Simulations reveal that DM-PhyClus can outperform conventional clustering methods, as well as the Gap procedure, a pure distance-based algorithm, in terms of mean cluster recovery. We apply DM-PhyClus to a sample of real HIV-1 sequences, producing a set of clusters whose inference is in line with the conclusions of a previous thorough analysis.
CONCLUSIONS: DM-PhyClus, by eliminating the need for cutpoints and producing sensible inference for cluster configurations, can facilitate transmission cluster detection. Future efforts to reduce incidence of infectious diseases, like HIV-1, will need reliable estimates of transmission clusters. It follows that algorithms like DM-PhyClus could serve to better inform public health strategies.

Keywords

References

  1. Nucleic Acids Res. 2014 Jan;42(Database issue):D897-902 [PMID: 24275491]
  2. BMC Bioinformatics. 2013 Nov 06;14:317 [PMID: 24191891]
  3. Syst Biol. 2012 Jul;61(4):579-93 [PMID: 22223445]
  4. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  5. Biosystems. 2008 Jan;91(1):94-107 [PMID: 17889993]
  6. J Acquir Immune Defic Syndr. 2013 Jul;63 Suppl 2:S248-54 [PMID: 23764643]
  7. Syst Biol. 2012 May;61(3):539-42 [PMID: 22357727]
  8. AIDS. 2003 Dec 5;17(18):2635-43 [PMID: 14685058]
  9. J Mol Evol. 1985;22(2):160-74 [PMID: 3934395]
  10. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  11. Mol Biol Evol. 2012 Aug;29(8):1969-73 [PMID: 22367748]
  12. J Infect Dis. 2011 Oct 1;204(7):1115-9 [PMID: 21881127]
  13. Clin Infect Dis. 2011 Feb 15;52(4):532-9 [PMID: 21220770]
  14. Mol Biol Evol. 1997 Jul;14(7):717-24 [PMID: 9214744]
  15. PLoS One. 2016 Feb 10;11(2):e0148459 [PMID: 26863322]
  16. AIDS Res Hum Retroviruses. 2008 Jan;24(1):7-14 [PMID: 18275342]
  17. J Infect Dis. 2007 Apr 1;195(7):951-9 [PMID: 17330784]
  18. Syst Biol. 2009 Apr;58(2):211-23 [PMID: 20525579]
  19. BMC Infect Dis. 2010 Sep 07;10:262 [PMID: 20822507]
  20. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  21. BMC Evol Biol. 2010 Aug 17;10:250 [PMID: 20716358]
  22. BMC Bioinformatics. 2015 Nov 04;16:355 [PMID: 26538192]
  23. Bioinformatics. 2011 Feb 15;27(4):592-3 [PMID: 21169378]
  24. Syst Biol. 2003 Oct;52(5):665-73 [PMID: 14530133]
  25. J Infect Dis. 2011 Nov;204(9):1463-9 [PMID: 21921202]
  26. Antivir Ther. 2006;11(8):1031-9 [PMID: 17302373]
  27. J Mol Evol. 1980 Dec;16(2):111-20 [PMID: 7463489]
  28. Nat Commun. 2011;2:321 [PMID: 21610724]
  29. Syst Biol. 2008 Oct;57(5):814-21 [PMID: 18853367]
  30. Bioinformatics. 2005 Feb 15;21(4):456-63 [PMID: 15608047]
  31. Mol Biol Evol. 2001 Jun;18(6):897-906 [PMID: 11371577]
  32. Int J Microbiol. 2016;2016:6572165 [PMID: 27073397]
  33. AIDS. 2013 Apr 24;27(7):1045-57 [PMID: 23902920]
  34. Infect Genet Evol. 2009 Sep;9(5):933-40 [PMID: 19559103]
  35. J Mol Evol. 1981;17(6):368-76 [PMID: 7288891]

Grants

  1. (CIHR HHP-126781/Canadian Institutes of Health Research

MeSH Term

Algorithms
Bayes Theorem
Cluster Analysis
HIV Infections
HIV-1
Homosexuality, Male
Humans
Male
Phylogeny
Software

Word Cloud

Created with Highcharts 10.0.0DM-PhyClusphylogeneticclusteringBayesianclusterstransmissionclusterinferenceestimatesalgorithmHIV-1cutpointsconfidenceClusteringsequencescanproducingneedinfectiouslikeBACKGROUND:ConventionalapproachesrelyarbitraryappliedposterioriAlthoughpracticebootstrap-basedtendleadsimilaroftenproduceconflictingmeasurescurrentstudyproposesnewreferDirichlet-MultinomialPhylogeneticidentifiessetsresultingquickchainsthusyieldingeasily-interpretablewithoutusingadhocdistancerequirementRESULTS:SimulationsrevealoutperformconventionalmethodswellGapprocedurepuredistance-basedtermsmeanrecoveryapplysamplerealsetwhoselineconclusionspreviousthoroughanalysisCONCLUSIONS:eliminatingsensibleconfigurationsfacilitatedetectionFutureeffortsreduceincidencediseaseswillreliablefollowsalgorithmsservebetterinformpublichealthstrategiesDM-PhyClus:diseaseMarkovChainMonteCarloPhylogenetics

Similar Articles

Cited By