Eccentric cycling is more efficient in reducing fat mass than concentric cycling in adolescents with obesity.

Valérie Julian, David Thivel, Maud Miguet, Bruno Pereira, Frédéric Costes, Emmanuel Coudeyre, Martine Duclos, Ruddy Richard
Author Information
  1. Valérie Julian: Department of Sport Medicine and Functional Explorations, Diet and Musculoskeletal Health Team, CRNH, INRA, University Teaching Hospital of Clermont-Ferrand, University of Clermont Auvergne, Clermont-Ferrand, France. ORCID
  2. David Thivel: Laboratory AME2P, University of Clermont Auvergne, Aubière, France.
  3. Maud Miguet: Laboratory AME2P, University of Clermont Auvergne, Aubière, France.
  4. Bruno Pereira: Department of Biostatistics, University Teaching Hospital of Clermont-Ferrand, Clermont-Ferrand, France.
  5. Frédéric Costes: Department of Sport Medicine and Functional Explorations, Diet and Musculoskeletal Health Team, CRNH, INRA, University Teaching Hospital of Clermont-Ferrand, University of Clermont Auvergne, Clermont-Ferrand, France.
  6. Emmanuel Coudeyre: Department of Physical Medicine and Rehabilitation, Diet and Musculoskeletal Health Team, CRNH, INRA, University Teaching Hospital of Clermont-Ferrand, University of Clermont Auvergne, Clermont-Ferrand, France.
  7. Martine Duclos: Department of Sport Medicine and Functional Explorations, Diet and Musculoskeletal Health Team, CRNH, INRA, University Teaching Hospital of Clermont-Ferrand, University of Clermont Auvergne, Clermont-Ferrand, France.
  8. Ruddy Richard: Department of Sport Medicine and Functional Explorations, Diet and Musculoskeletal Health Team, CRNH, INRA, University Teaching Hospital of Clermont-Ferrand, University of Clermont Auvergne, Clermont-Ferrand, France.

Abstract

The benefits of eccentric (ECC) training on fat mass (FM) remain underexplored. We hypothesized that in obese adolescents, ECC cycling training is more efficient for decreasing whole-body FM percentage compared to concentric (CON) performed at the same oxygen consumption (VO ). Twenty-four adolescents aged 13.4 ± 1.3 years (BMI > 90th percentile) were randomized to ECC or CON. They performed three cyclo-ergometer sessions per week (30 min per session) for 12 weeks: two habituation, 5 at 50% VO , and 5 at 70% VO . Anthropometric measurements, body composition, maximal incremental CON tests, strength tests, and blood samples were assessed pre- and post-training. Whole-body FM percentage decreased significantly after compared to pretraining in both groups, though to a larger extent in the ECC group (ECC: -10% vs CON: -4.2%, P < 0.05). Whole-body lean mass (LM) percentage increased significantly in both groups after compared to pretraining, with a greater increase in the ECC group (ECC: 3.8% vs CON: 1.5%, P <0.05). The improvements in leg FM and LM percentages were greater in the ECC group (-6.5% and 3.0%, P = 0.01 and P < 0.01). Quadriceps isometric and isokinetic ECC strength increased significantly more in the ECC group (28.3% and 21.3%, P < 0.05). Both groups showed similar significant VO improvement (ECC: 15.4% vs CON: 10.3%). The decrease in homeostasis model assessment of insulin resistance index was significant in the ECC group (-19.9%). In conclusion, although both ECC and CON cycling trainings are efficient to decrease FM, ECC induces greater FM reduction, strength gains, and insulin resistance improvements and represents an optimal modality to recommend for obese adolescents.

Keywords

References

  1. Appetite. 2013 Oct;69:168-73 [PMID: 23764241]
  2. Front Physiol. 2018 Jan 05;8:1118 [PMID: 29354073]
  3. Obes Rev. 2006 May;7(2):183-200 [PMID: 16629874]
  4. Br J Sports Med. 2018 Feb;52(3):161-166 [PMID: 27986760]
  5. Br J Nutr. 2012 Feb;107(3):445-9 [PMID: 21733267]
  6. Sports Med. 2017 May;47(5):917-941 [PMID: 27647157]
  7. Eur J Appl Physiol. 2013 Jan;113(1):147-55 [PMID: 22615009]
  8. Med Sci Sports Exerc. 2002 Mar;34(3):487-96 [PMID: 11880814]
  9. Br J Sports Med. 2009 Dec;43(12):909-23 [PMID: 19158130]
  10. Eur J Clin Invest. 2008 Apr;38(4):218-26 [PMID: 18339002]
  11. BMC Geriatr. 2017 Jul 17;17(1):149 [PMID: 28716003]
  12. Scand J Med Sci Sports. 2019 Jan;29(1):4-15 [PMID: 30222208]
  13. Med Sci Sports Exerc. 2013 Sep;45(9):1773-81 [PMID: 23475167]
  14. Med Sci Sports Exerc. 2013 Aug;45(8):1460-8 [PMID: 23439418]
  15. Biomed Res Int. 2014;2014:398960 [PMID: 24804220]
  16. Nutr Hosp. 2018 Jan 17;35(2):340-345 [PMID: 29756967]
  17. J Strength Cond Res. 2017 Dec;31(12):3508-3523 [PMID: 28834797]
  18. Br J Sports Med. 2009 Aug;43(8):556-68 [PMID: 18981046]
  19. Front Physiol. 2017 Jul 04;8:447 [PMID: 28725197]
  20. Med Sci Sports Exerc. 2011 Dec;43(12):2281-96 [PMID: 21606878]
  21. Diabetes Metab. 2011 Feb;37(1):72-8 [PMID: 21126900]
  22. J Womens Health (Larchmt). 2009 Feb;18(2):253-60 [PMID: 19183097]
  23. Obes Facts. 2016;9(1):52-63 [PMID: 26901423]
  24. J Sports Sci Med. 2007 Sep 01;6(3):292-304 [PMID: 24149415]
  25. J Appl Physiol (1985). 2014 Jun 1;116(11):1426-34 [PMID: 23823152]
  26. J Appl Physiol (1985). 2001 Nov;91(5):2135-42 [PMID: 11641354]
  27. Int J Exerc Sci. 2017 Jul 01;10(4):487-496 [PMID: 28674594]
  28. J Appl Physiol (1985). 2005 Sep;99(3):1174-81 [PMID: 15817716]
  29. Biomed Res Int. 2013;2013:218970 [PMID: 23484095]
  30. Obes Rev. 2015 Feb;16 Suppl 1:25-35 [PMID: 25614201]
  31. Scand J Med Sci Sports. 2010 Feb;20(1):e103-11 [PMID: 19422638]
  32. Med Sci Sports Exerc. 2011 Jan;43(1):64-73 [PMID: 20508540]
  33. Eur J Appl Physiol. 2014 Apr;114(4):805-14 [PMID: 24390692]
  34. Scand J Med Sci Sports. 2003 Apr;13(2):88-97 [PMID: 12641640]
  35. Phys Ther. 2008 Nov;88(11):1345-54 [PMID: 18801851]
  36. Eur J Appl Physiol. 2014 Jun;114(6):1183-95 [PMID: 24563093]
  37. Am J Physiol Regul Integr Comp Physiol. 2000 May;278(5):R1282-8 [PMID: 10801298]
  38. Compr Physiol. 2011 Oct;1(4):2029-62 [PMID: 23733696]
  39. Front Physiol. 2016 Nov 16;7:483 [PMID: 27899894]
  40. Circulation. 2005 Apr 19;111(15):1999-2012 [PMID: 15837955]
  41. Pediatr Exerc Sci. 2017 Aug;29(3):316-325 [PMID: 28165870]
  42. J Sports Sci Med. 2017 Mar 01;16(1):35-43 [PMID: 28344449]
  43. Eur J Appl Physiol. 2009 Sep;107(2):145-53 [PMID: 19543908]
  44. J Appl Physiol (1985). 2017 Oct 1;123(4):884-893 [PMID: 28663378]

Grants

  1. TEXTOO2015/Centre National pour le Développement du Sport
  2. AOI2015/University Teaching Hospital of Clermont-Ferrand

MeSH Term

Adipose Tissue
Adiposity
Adolescent
Anthropometry
Bicycling
Exercise Test
Exercise Therapy
Female
Humans
Insulin Resistance
Male
Muscle Strength
Oxygen Consumption
Pediatric Obesity
Quadriceps Muscle

Word Cloud

Created with Highcharts 10.0.0ECCFMgroupadolescentscyclingCONVOmassefficientpercentagecomparedstrengthsignificantlygroupsECC:vsCON:P < 005greater3%eccentrictrainingfatobeseconcentricperformedper5bodycompositiontestsWhole-bodypretrainingLMincreased35%improvements01significantdecreaseinsulinresistanceobesityexercisebenefitsremainunderexploredhypothesizeddecreasingwhole-bodyoxygenconsumptionTwenty-fouraged134 ± 13 yearsBMI > 90thpercentilerandomizedthreecyclo-ergometersessionsweek30 minsession12 weeks:twohabituation50%70%Anthropometricmeasurementsmaximalincrementalbloodsamplesassessedpre-post-trainingdecreasedthoughlargerextent-10%-42%leanincrease8%1P <0legpercentages-60%P = 0Quadricepsisometricisokinetic2821showedsimilarimprovement154%10homeostasismodelassessmentindex-199%conclusionalthoughtrainingsinducesreductiongainsrepresentsoptimalmodalityrecommendEccentricreducingchildhoodphysiology

Similar Articles

Cited By