Exploring non-linear distance metrics in the structure-activity space: QSAR models for human estrogen receptor.

Ilya A Balabin, Richard S Judson
Author Information
  1. Ilya A Balabin: Leidos, Inc., 109 TW Alexander Drive, MD N127-01, Research Triangle Park, NC, 27711, USA. ilya.balabin@gmail.com. ORCID
  2. Richard S Judson: US EPA, 109 TW Alexander Drive, ORD, NCCT, Research Triangle Park, NC, 27711, USA.

Abstract

BACKGROUND: Quantitative structure-activity relationship (QSAR) models are important tools used in discovering new drug candidates and identifying potentially harmful environmental chemicals. These models often face two fundamental challenges: limited amount of available biological activity data and noise or uncertainty in the activity data themselves. To address these challenges, we introduce and explore a QSAR model based on custom distance metrics in the structure-activity space.
METHODS: The model is built on top of the k-nearest neighbor model, incorporating non-linearity not only in the chemical structure space, but also in the biological activity space. The model is tuned and evaluated using activity data for human estrogen receptor from the US EPA ToxCast and Tox21 databases.
RESULTS: The model closely trails the CERAPP consensus model (built on top of 48 individual human estrogen receptor activity models) in agonist activity predictions and consistently outperforms the CERAPP consensus model in antagonist activity predictions.
DISCUSSION: We suggest that incorporating non-linear distance metrics may significantly improve QSAR model performance when the available biological activity data are limited.

Keywords

References

  1. J Chem Inf Model. 2006 Jul-Aug;46(4):1535 [PMID: 16859285]
  2. J Chem Inf Model. 2006 Nov-Dec;46(6):2412-22 [PMID: 17125183]
  3. Biochemistry. 2007 Feb 20;46(7):1743-58 [PMID: 17249692]
  4. J Chem Inf Model. 2008 Aug;48(8):1716-28 [PMID: 18686944]
  5. Chem Res Toxicol. 2008 Nov;21(11):2195-206 [PMID: 18921983]
  6. Drug Discov Today. 2009 Jul;14(13-14):698-705 [PMID: 19410012]
  7. J Mol Graph Model. 2010 Jan;28(5):383-400 [PMID: 19850503]
  8. Environ Health Perspect. 2010 Apr;118(4):485-92 [PMID: 20368123]
  9. J Chem Inf Model. 2012 Jun 25;52(6):1413-37 [PMID: 22582859]
  10. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):67-76 [PMID: 23707773]
  11. Drug Discov Today. 2013 Aug;18(15-16):716-23 [PMID: 23732176]
  12. J Chem Inf Model. 2014 Mar 24;54(3):837-43 [PMID: 24460242]
  13. Regul Toxicol Pharmacol. 2014 Aug;69(3):443-50 [PMID: 24845243]
  14. Environ Sci Technol. 2014;48(15):8706-16 [PMID: 24960280]
  15. Methods. 2015 Jan;71:58-63 [PMID: 25132639]
  16. Future Med Chem. 2015;7(18):2415-7 [PMID: 26653118]
  17. Environ Health Perspect. 2016 Jul;124(7):1023-33 [PMID: 26908244]

Word Cloud

Created with Highcharts 10.0.0activitymodelQSARmodelsdatametricsspaceestrogenreceptorstructure-activitybiologicaldistancehumanlimitedavailablebuilttopincorporatingCERAPPconsensuspredictionsnon-linearBACKGROUND:Quantitativerelationshipimportanttoolsuseddiscoveringnewdrugcandidatesidentifyingpotentiallyharmfulenvironmentalchemicalsoftenfacetwofundamentalchallenges:amountnoiseuncertaintyaddresschallengesintroduceexplorebasedcustomMETHODS:k-nearestneighbornon-linearitychemicalstructurealsotunedevaluatedusingUSEPAToxCastTox21databasesRESULTS:closelytrails48individualagonistconsistentlyoutperformsantagonistDISCUSSION:suggestmaysignificantlyimproveperformanceExploringspace:ChemicalDistanceHumanMolecularsimilarityStructure–activitylandscape

Similar Articles

Cited By